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AFIT/GE/ENG/97D-09

Abstract

Space Time Adaptive Processing (STAP) exhibits a significant capability for nulling

interferers such as clutter and jamming. This capability depends on the accuracy of the

radar phase received by each of the antenna elements over the coherent processing inter-

val. Atmospheric turbulence introduces phase perturbations on the propagating radar wave

over space, and to a lesser degree, time. This thesis examines the effects of atmospheric

turbulence-induced phase perturbations on the performance of ground-based STAP sys-

tems using Fully Adaptive Joint Domain Optimum and Partially Adaptive Factored-Time

Space processing methods.

The magnitude of the turbulent condition may be expressed in terms of the index

of refraction structure constant, C2. This parameter is a statistical representation of the

strength of the turbulence and typically ranges from 5.0 X 10-17 m-2/ 3 for extremely light

turbulence to 5.0 X 10-1 m-2/13 for heavy turbulence.

Significant atmospheric turbulence is a near-to-ground phenomenon and is a matter

of concern in ground-based array systems. This thesis concentrates on the turbulence

effects on STAP applied to ground-based arrays. Since turbulent conditions disappear

rapidly with altitude, this thesis further focuses on the capability of STAP to resolve

targets at low elevation angles in the presence of turbulence. To focus on the problem of

turbulence effects, only clutter interference and receiver noise are considered. Turbulence

effects on the EM phase-front are calculated for C2 values ranging from 5.0 X 10-14 m-2/3

to 5.0 x 10-10 m-2/ 3 in the S and X frequency bands. A similar analysis is presented,

but with more pronounced effects, for Ka-band radar. The analysis is carried out for

array lengths of 32, 64, and 200 antenna elements at each frequency. The performance

losses caused by the phase perturbations are explained and summarized in terms of the

signal-to-interference-plus-noise ratio (SINR) and the SINR Loss (LSINR).

Fully adaptive performance losses due to atmospheric turbulence are less than 1 dB

for most array sizes, frequencies, and typical turbulence strengths. The 200 element array

faces a 6 dB performance loss at 30 GHz under turbulence of C' = 5 X 10-12 m-2/ 3 . Similar

xiv



losses are recorded for Factored Time-Space and for all experiments where sampling of the

interference through turbulence is simulated.
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ATMOSPHERIC INDUCED ERRORS

IN

SPACE-TIME ADAPTIVE PROCESSING

L Introduction

1.1 Overview

Ground-based radar systems use electromagnetic (EM) waves to detect targets in a

predefined space and track their position, range, velocity, and many other characteristics.

EM waves employed in radars systems are subject to disruptive atmospheric effects. Among

these effects are the perturbations introduced by atmospheric turbulence. Turbulence

begins with the radiative solar heating of the earth. Thermal energy radiated to the earth

from the sun passes through convection to the near-to-ground atmosphere. The additional

effects of water vapor molecules in the air and atmospheric pressure variations increase the

turbulent conditions. These thermal, vapor, and pressure factors induce random motion in

the air particles of the atmosphere. This random motion may be modeled as many shifting

air pockets with randomly varying shapes, sizes, and refractive indices. These conditions

of atmospheric turbulence are most pronounced near to the ground. Just as in optical

systems, turbulent atmosphere induces amplitude scintillations and phase perturbations

in propagating EM waves. However, the more critical effects occur in the phase of the

EM wave. These fluctuations in the phase of an EM wave hinder the performance of

ground-based antennas. Antenna arrays which use phasing for beamsteering and nulling

are especially prone to the effects of turbulence. Space-Time Adaptive Processing (STAP)

techniques are also vulnerable to atmospheric turbulence effects. This thesis examines the

effects of atmospheric turbulence on the performance of STAP systems.

1.2 Supporting work

The effects of atmospheric turbulence are most pronounced at optical wavelengths.

At longer wavelengths, the effects are less severe but perturbations nonetheless occur.
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Phase perturbation effects are more extreme in systems with shorter wavelengths, longer

propagation path lengths, and larger receiver separations. Hill, Bohlander, Clifford, and

McMillan have measured phase difference variances in millimeter waves propagating near to

the ground under light turbulent conditions. Light turbulent conditions may be expressed

by a typical index of refraction structure constant (C2) value on the order of 10-14 m-2/ 3.

Over more than a kilometer of propagation and under these light turbulent conditions,

antenna receivers separated by 10 meters measured phase difference variances as high as

0.5 rad 2 [11],[12].

Radar normally operates in the range of millimeter to centimeter wavelengths. While

this portion of the spectrum is typically less prone than higher wavelengths to turbulence

effects, the propagation distances in radar applications are usually much greater than those

examined in the Hill experiment. Consequently, the turbulence induced phase perturba-

tions on propagating EM waves are an overriding concern for large radar antenna arrays.

The concern is especially relevant for those radars operating near to the ground.

1.3 Relevance

Accurate radar beamsteering is made possible by phasing in antenna arrays. The

phase of a signal may be translated into a precise direction of arrival (DOA) for that

signal. By detecting the phase of a received signal, an antenna array may determine the

signal's DOA. The Air Force is motivated to improve the performance of both airborne

and ground-based arrays. In the case of ground-based antenna arrays, locally occurring

turbulence can contribute to the disruption of the EM wave and degrade the performance

of the array antenna system. This performance degradation is especially true in situations

involving low target elevation angles. The low target elevation leads to long propagation

distances through the turbulence, thereby increasing the turbulence effect.

Strong turbulence causes phase aberrations which result in random phase shifts over

the length of the array. These phase shifts mar the true phase, making the array receiver

less effective in placing the mainbeam and nulls. For temporally shifting turbulence, phase

variations in the signal will occur over the duration of the transmitted waveform, from

pulse to pulse within a coherent processing interval (CPI). In addition, temporally shifting

2



turbulence may fully or partially obsolete an adaptive solution before it is applied. These

signal fluctuations over distances and time produce errors in the computed DOA and tar-

get doppler frequency, respectively. Consequently, an adaptive weighting scheme for the

array, calculated based on knowledge of the target location and applied under turbulent

conditions, does not perform optimally. Similarly, a weighting scheme developed using

information perturbed by the turbulent conditions also offers sub-optimal performance.

STAP systems which employ partially adaptive techniques are even more prone to atmo-

spheric induced errors. These systems sacrifice degrees of freedom (DOF) and performance

to improve computation time. By sacrificing DOF these partially adaptive STAP systems

are using fewer than the full complement of elements and CPI pulses available. The phase

errors induced by atmospheric turbulence degrade the accuracy of the adaptive solutions

developed in fully and partially adaptive STAP systems.

Developing improvements to antenna systems for better target detection and DOA

estimation is a major thrust of the Air Force Research Laboratories (AFRL). One focus

area of the AFRL is in the development of STAP techniques. STAP techniques, originally

envisioned for use in airborne radar arrays, are designed to improve target beamforming

while improving nulling of clutter and barrage jammers. These techniques may also be

applied to ground-based arrays which are often larger in size and more prone to phase

variations caused by atmospheric turbulence. Radar arrays typically operate in the L, S, C,

or X-band region of the spectrum (1-12 GHz). Even at such low operating frequencies, there

are some phase variations introduced by the turbulence in the atmosphere. Atmospheric

conditions affecting the phase of EM waves will degrade STAP performance. However,

since they incorporates adaptivity, STAP techniques may also be used to compensate for

turbulent conditions in much the same way adaptive optics techniques improve imaging

through the atmosphere [12]. So STAP has a lot of potential for use in ground-based radar

arrays.
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1.4 Approach

The overall effect of atmospheric turbulence on STAP performance in ground-based

radar is unknown. This thesis provides some understanding of these effects. To establish

this understanding, the following steps are taken

"* Develop spatial phase perturbation statistics for combinations of

- arrays with geometries (defining spatial DOF) of 200 antenna elements, 64 an-

tenna elements, and 32 antenna elements spaced at half-wavelength intervals

- 3GHz, 10GHz, and 30GHz radar systems

- C2 values of 5 x 10-14, 5 x 10-13, 5 x 10-12, 5 x 10-", 5 x 10-10 m-2/3

"* Carry out simulations of STAP in a turbulent environment

- Joint Domain Optimum (JDO) method - fully adaptive

- Factored Time-Space (FTS) method - partially adaptive

"* Document the extent of the STAP performance degradation

This study concentrates on the nulling and beamsteering performance of systems using

STAP algorithms under turbulence. To focus on the errors caused by phase perturbations,

this study assumes the only interference in the environment is caused by clutter returns.

Jammers are assumed absent from the problem.

1.5 Summary

This thesis establishes a measure of the effects of atmospheric turbulence on radar

arrays and STAP performance.

Chapter II introduces some key statistical concepts in atmospheric turbulence the-

ory. These concepts include the index of refraction model, index of refraction structure

constant, and the phase structure constant. Chapter II also includes an orientation to the

primary STAP algorithms and the appropriate performance metrics. Chapter III discusses

the effects of turbulence on STAP techniques using the tools described in Chapter II. This

4



chapter also includes an analytical development of the effects on STAP performance. Chap-

ter IV describes the organization of the experiment and the simulation tools used. This

chapter includes procedures used for simulating turbulence effects and the settings used

for the parameters of the experiment. Chapter V describes the results of the experiment.

Chapter VI summarizes the experimental results and includes suggestions for future areas

of study.
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II. Background

Since atmospheric turbulence effects are the focus of this thesis,, this chapter opens with a

development of some important statistical quantities for characterizing turbulence. These

statistical quantities help to characterize the degree and extent of atmospheric turbulence.

The index of refraction model represents the variations in the atmospheric refractive

index under turbulent conditions. Hill, Clifford, and Lawrence developed a method by

which to calculate the index of refraction structure function from data on temperature,

humidity, and pressure variations [10],[8]. They went on to calculate the typical fluctuations

of these meteorological quantities at different wavelengths [8],[9]. In addition, Hill et al.

amassed experimental data on phase perturbations for millimeter waves propagating over

the ground [11],[12] as well as phase perturbation data at lower frequencies [13].

The index of refraction structure constant C2 is a measure of the degree of refractive

index fluctuations. It provides an effective scalar measure of the strength of the turbu-

lence. The index of refraction structure function D, and the phase structure function DS

are derived from C2 and directly impact the statistics of the EM wave variations between

points separated in space. A measure of the spatial and temporal variations in the EM wave

transverse to its propagation direction is the mutual coherence function (MCF) [16],[3],[14].

A method of simulating the turbulence induced phase perturbation comes from the cor-

relation properties of the phase structure function and the MCF. This method is known

as phase screen generation and can simulate the relative phase perturbation at any point

in space [18]. Experimental data highlighting turbulence statistics for optical, millime-

ter, and centimeter wavelengths are presented in addition to the statistical developments

mentioned.

The second portion of this chapter includes a brief orientation to STAP. In this

orientation, similar to that presented by Ward [17], the STAP algorithms are developed

for:

"* Joint Domain Optimum (JDO) - a fully adaptive STAP method

"* Factored Time-Space (FTS) - an element space post-Doppler partially adaptive STAP

method
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In addition to these STAP algorithms, two important STAP metrics are introduced. These

metrics are the signal-to-interference-plus-noise ratio (SINR) and SINR Loss (LsINR).

2.1 Notation and Definitions

In this section, the most common symbols and notation are introduced. Much of the

notation used in this thesis is common to the atmospheric turbulence and radar adaptive

signal processing research communities. A good part of this document uses linear algebra

and matrix conventions.

2.1.1 Linear algebra conventions. Matrix and vector notation is used heavily in

this document. Vectors are represented by boldface lowercase letters and greek symbols

such as s and i. Vectors are assumed to be column vectors unless otherwise specified.

Another type of vector is written in the form F. This notation refers mainly to spatial

quantities and denotes a vector pointing in space as

r = r~x-+ rdy+rzz-

with components in each of the three orthogonal directions. These directions are repre-

sented by the unit vectors ', ', and Z. The vector r' may also be represented as a 3 x 1

column vector

r = [r., rr]

Matrices are denoted by boldface, capital letters and greek symbols. Examples of

matrix notation include A and E. Matrices may also be denoted as a vector of vectors.

Examples of this notation are

C T

A= [a b c] B= bT

aT
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The superscript T, (.)T, denotes the transpose operation. A superscript H, (.)H,

denotes transposition combined with substitution of each element by its complex conjugate.

The complex conjugate is represented by (.)*.

The linear algebra product of two or more matrices may be expressed as AB and

A.B. Two other relevant multiplication operations are the Hadamard product,

allbil a 12 b12  a 13 b13

A ® B = a 21b21 a 22b22 a 23b23

a 31b31  a 32 b32  a 33 b33

and the Kronecker product,

a1 1 B a12B a13B
A®B = a 21 B a22B a2 3B

a 31 B a 32 B a 3 3B

Either operation may be performed on vectors or matrices.

2.1.2 Statistical conventions. Much of the work in the fields of atmospheric

turbulence and adaptive processing involve statistical quantities. The following conventions

are useful in representing statistical concepts.

The ensemble average or expected value of a random variable X, written as E[X], is

defined as

E[X(z)] = fX(z)fx(z)dz.

This expression is written in the general form for the random process, X, with respect to

the random variable, z. In this expression, Ix (z) is the probability density function of the

random process. The expected value is often known as the mean or the ensemble average

and may also be denoted as (Xý. If X is a single random variable, then E[X] is a scalar

value. If X is a matrix (vector) of random variables, then E[XI is also a matrix (vector)

of ensemble averages.
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The second order statistics include the variance and covariance of random processes.

The variance is a measure of a random variable's deviation from it's expected value,

Var(X) = E[(X - E[X])']

= E[X 2 ] - E 2 [X].

For zero-mean random variables, the variance may be simplified to

Var(X)-- E[X2],

where E[X 2] is also known as the mean square value. The covariance of two random

variables, X and Y, is defined as

Cov(X,Y) = E[(X - E[X])(Y - E[Y])]

and also simplifies to

Cov(X,Y) = E[XY] - E[X]E[Y].

Once again, the variance or covariance of a single random variable is a scalar quantity while

that of a matrix (vector) is a matrix (vector) of variances or covariances. In addition, the

radar adaptive processing portion of this document often denotes the covariance matrix as

R.

If a random variable is known to have a Gaussian distribution, a great deal is known

about that random quantity. If the mean A and the variance a2 of the distribution are

known, the characterization of the random variable is complete. All the necessary infor-

mation about the random variable X with such a distribution may be conveyed by

X _ K(js, 0.2),

where the notation Y denotes the distribution of a Gaussian random variable.
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2.1.3 Other conventions. For a complex quantity, X, the magnitude of the

number is given 'by amp(X) or by IXI. The angle or phase of the quantity is given by

ang(X) or by ZX. The real portion of the quantity is given by Re(X) and the imaginary

portion is given by Im(X).

2.2 Atmospheric Turbulence

This section summarizes the research done to understand atmospheric turbulence

effects on EM wave propagation. Many models exist for the EM wave propagating through

the atmosphere. These models were largely developed by Tatarski and were presented by

Fante and Strohbehn. Each of the models are most accurate under their own specifically

defined conditions. One the most important of these conditions concerns the frequency of

the EM wave.

In general, the effects of atmospheric turbulence are more acute in EM waves with

shorter wavelengths. General effects of atmospheric turbulence in the troposphere (altitude

< 10 km) [16] include

"* absorption leading to signal attenuation

"• wave direction changes (bending) proportional to altitude due to dielectric constants

changing with height

"• random dielectric constant variations causing random wave scattering which result

in

(a) amplitude variance

(b) phase variance

(c) direction of arrival (DOA) variance

(d) polarization variance

Since higher frequencies suffer more from atmospheric turbulence effects, much of this

field of research focuses on the optical spectrum (outside the millimeter wave band, >300

GHz). In fact, quite a bit of progress has been made in the field of adaptive optics and
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atmospheric turbulence compensation with adaptive mirrors [14]. In the interests of array

antenna radar systems, this thesis focuses on the primary radar frequencies (3-30 GHz, 1

cm < A < 10 cm).

As mentioned in Sec. 1.3, randomness introduced into the phase of a propagating

wave can have debilitating effects on STAP performance. Models of atmospheric turbu-

lence effects on EM waves yield some valuable insight into the EM wave phase statistics.

Amplitude variations in the propagating EM wave are reported to be log-normal and sim-

ilarly, phase variations are shown to follow a Gaussian distribution [16],[11]. Therefore,

knowing the first and second order statistics of these phase perturbations can provide a

precise description of the turbulent effect. A number of important relations are derived in

this chapter to provide information on the statistics of the phase variations. These relations

are the index of refraction structure constant C,2; the index of refraction structure function

D, (p, t); the wave structure function function D (p, t); and the phase structure function

Ds (p, t). Using these tools, the turbulence effects on STAP may be fully understood.

2.2.1 Index of refraction model. Fante, Roggemann and Welsh, and others point

out that temperature variations cause random fluctuations in the index of refraction [6] ,[14]

with respect to position F and time t. This random quantity is

n(rt) = 1 +ni(rt). (2.1)

The zero-mean, randomly fluctuating term in the index of refraction, ni (r, t), is caused by

temperature differences between the various regions of air. The thermal effects mentioned

in Sec. 1.1 cause these temperature gradients. The subsequent randomly varying regions,

or pockets, of air are further diversified by spatial humidity characteristics and pressure

fluctuations in the atmosphere.

2.2.2 Index of refraction structure constant, C2, and Kolmogorov spectrum, 4n(.).

The pockets of air, also known as turbulent eddies, have randomly varying shape, size and

index of refraction. The randomly fluctuating refractive index term, ni (r, t), is shown to be

Gaussian distributed with zero mean and covariance exhibiting stationarity in local regions
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[6]. This means that the covariance of the random index of refraction, instead of being a

function of position, is a function of the distance between points in three dimensional space,

p = Fr-'. The scale of the turbulence characterizes the strength of the turbulence and may

be expressed as a function of the statistical distribution of the eddy sizes [1,, ly, lz]. This

distribution may be written from Kolmogorov Theory, which characterizes the statistics

of index of refraction variations in terms of mathematical formulas. These mathematical

formulas are written in terms of the eddy spatial frequency ,' = IS + r2 + rz. Theeddy

spatial frequency is given in terms of the eddy sizes by

S= ., 27r/1,

nX 27r/1,

Kolmogorov Theory describes the distribution of the turbulence strength among various

sized r.. A simplified expression of the power spectral density (PSD) is the von Karman

spectrum 4(rV, p). The mathematical form of the PSD is

0.033C2 (p) exp[-( 2.)2]

= [ 2 + Lo 2]11/6 (2.2)

and is known as the von Karman spectrum. In the expression for the von Karman spectrum,

L0 is the outer scale of the turbulence and 10 is the inner scale of the turbulence. These

values represent the largest and smallest theoretical eddy sizes and represent boundaries

which describe the extent of the spread of 1. The index of refraction structure function

is defined as

D.(p) = E[(ni(r',t) - n 1(f-- ',,t))2 ]. (2.3)

In many cases, the index of refraction structure function exhibits minimal change with

reference to p and simply appears as C2. The value of C2 is often used to express the

strength of turbulence. In this study, C2 is often referred to characterize the turbulence
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strength. The expression for the von Karman spectrum then becomes

= 0.033Cf exp[-(j )2] (2.4)
[r 2 + Lo 2 111/6

Tatarski and others [10],[14],[4] have shown that a sufficiently accurate representation of

the von Karman spectrum is

= 0.033CuC- 11/ 3. (2.5)

2.2.3 Phase structure function. Just as Eqn. (2.3) describes the index of refrac-

tion structure function, a similar expression describes the EM wave strucure function. The

EM wave is given by Clifford and Lataitis [3] as

e(r',t) = A0(r',t)¢(r',t)

= Ao(r-,t)e'P(F't). (2.6)

Here, A0 (r', t) is the unperturbed electric field. The turbulence perturbation is contained

in the exponential quantity which is written as

0(9-,t) = exp(O(f-,t))

= exp(x(Vt)+jS(ft)). (2.7)

In this expression, the log amplitude term, X(r, t) is related to the amplitude perturbation

by

X (G,t) =In A -, t)IAo G,t)I" (2.8)

The zero-mean turbulence effect on the amplitude of the EM wave is given by A(g, t). The

log amplitude perturbation term is small in comparison to the phase perturbation term

given by S(r-, t). In this phase term, S(r-, t) is the zero-mean perturbation of the phase of

the EM wave due to turbulence.
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The wave structure function represents the statistics of the amplitude and phase

changes due to turbulence. The wave structure function is

D(p,t) = E[(O(r-,t)-V(r--',t))2]

= 2E[,02 (Ot)] - 2E[VP(9-,t)4* (- -F',t)]. (2.9)

The wave structure function may be divided into two parts,

D(p,t) = Dx(p,t) + Ds(p,t). (2.10)

The first term represents the amplitude structure function and the second is the phase

structure function. The phase structure function,

Ds(p,t ) = E[(S(9-, t) - S(9- -', ))2], (2.11)

provides a statistic by which the effects of turbulence on the EM wave phase may be

measured. The phase structure function is a second order statistic representing the variance

of the spatial phase difference due to the turbulence induced perturbation.

2.2.4 Experimental Results. Section 2.2.2 highlights the importance of the index

of refraction structure constant as a parameter characterizing the strength of turbulence.

A number of researchers have compiled C2 values under varying conditions and at different

frequencies.

In calculations reported by Hill, Clifford, and Lawrence [9],[10],[8], it is evident that

both temperature and humidity factors affect the turbulence at all frequencies. While

the turbulence effects are more pronounced at higher frequencies, the proportion of the

effect on C2 due to humidity is significantly higher at radar frequencies than at higher

frequencies. It is this humidity factor which contributes significantly to turbulence effects

in radar waves propagating near the ground.

Hill, Bohlander, Clifford, and McMillan [11],[12] measured phase difference and as-

sociated statistics for 173 GHz waves propagating over flat ground for a distance of 1374
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m at a height of 3.68 m. Comparing the values of C2 derived from measured data to val-

ues calculated from measured micrometeorological data using methods presented in Sec.

2.2.1 resulted in good agreement. These millimeter-wave C. values were on the order

of 10-12 m-2/ 3. Data from propogating optical frequencies also agreed with theoretical

predictions calculated via micrometeorological measurements. In Chapter IV, this data

is used to validate the phase screen generator used to calculate Ds(p) under different C2

values.

Fante [7] also points out a number of C2 measurements taken under different condi-

tions. The Bufton, Hufnagel structure constant model for optical wavelengths is

C2 - 2.7 x 10-16 3(v 2 ) 10 e-h + e-(h/1. 5) , (2.12)

where turbulence is approximated at height h for a mean square wind velocity (v 2). Vernin

et al. measured C2 values at optical wavelengths ranging from 3.9 x 10-17 m-2/ 3 at h = 3

km to 7 x 10-18 m-2/ 3 at h = 16 km. The Hufnagel model calculations yield values on the

same order as Vernin's measurements for all heights and equals Vernin's measured values

for heights above 16 km. Barletti also measured optical wavelength C2 values for varying

heights and arrived at similar results.

Kallistratova measured optical wavelength C2 values at a height of 2.5 m in the range

of 5.4 x 10-14 m-2/ 3 and 5.4 x 10-13 m-2/ 3 with high probability. Rome Air Development

Center (RADC) measurements of C2 in the optical spectrum at a height of 3 m also show

values on the order of 10-13 m-2/ 3 to 10-14 m-2/ 3 . The RADC measurements during the

day varied from those taken at night. The measured RADC relationship of C2 to height h

was found to be

C(h) •-Cn()-4 (2.13)

while the nighttime relationship was

C2(h) C2(1)h5-2/3. (2.14)
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Hall measured an average C2(1) = 6 x 10-13 m 21 3 and reports similar relationships as

those reported by RADC.

Thompson et al. measured C2 at 9.4 GHz frequency for heights from 0.15 km to

7.6 km. Here also, the peak C. value was on the order of 10-13 m-2/ 3. Thompson also

gathered Cn measurements at 3 GHz frequency and heights from 0.8 km to 1.5 km. These

measurements also found C2 to be on the order of 10-13 m-2/3. Fante claims that water

vapor effects near the ground cause C2 values at low frequencies to be one to two orders

of magnitude higher than in the optical frequency range. Fante goes on to cite thoeretical

work by Brown which confirms this statement for 10 GHz waves at heights up to 3 m.

Strohbehn and Fante [16],[6] among others acknowledge that temporal phase fluctua-

tions induced by turbulence in the EM wave are of much smaller magnitude and frequency

than spatial phase fluctuations. Taylor's frozen flow hypothesis attributes temporal phase

perturbations to spatial perturbations which are moved due the effect of winds with veloc-

ity V [6],[14]. Where there is some significant wind velocity, the index of refraction after

some time At is

n(r,t+At) = n(9+At,t)

= 1+nj(f++At,t). (2.15)

In this study, it is assumed that there is no significant wind velocity present. Therefore, the

simulations described in Chapter IV concentrate only on the spatial phase perturbations

induced by the turbulence.

From the research summarized in this section, it is clear that atmospheric turbulence

perturbations are effective at radar frequencies near to the ground. These perturbation

effects are of significant magnitude and their effect on STAP is presented in Chapter V.

2.3 Space-Time Adaptive Processing (STAP) Orientation

This section first introduces the basic concepts involved in array beamforming. It

goes on to highlight the important symbols and relationships in STAP. Having introduced

these concepts, this section provides an explanation of the key algorithms in the STAP
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Figure 2.1 Antenna array in operational environment. A typical ground-based antenna
array must resolve airborne targets while dealing with airborne and ground-
based jammers. Another major obstacle to overcome is ground clutter.
Ground clutter becomes increasingly disruptive in the case of resolving tar-
gets at low elevation angles. Graphic taken from Jane's Weapons Systems
[2].

development. Many of the concepts presented in this section are adapted from Ward's

Technical Report [17].

2.3.1 Antenna array beamforming basics. The purpose of the radar antenna is

to transmit EM energy and then receive the resulting reflections of this energy from the

surrounding space. In this way, the antenna may be used to detect and track targets in

this space. Antenna arrays offer the advantage of being able to transmit EM energy in

the form of a signal in a precise direction. This form of directional selectivity is known as

beamforming or beam-steering in the far-field [5]. The far-field refers to ranges over which

propagating EM wavefronts appear as plane waves. Antenna arrays are also capable of

preventing EM transmission in specific directions. This is known as antenna nulling. Just

as the antenna array can "steer" and "null" for transmission, it can also "steer" and "null"

for reception. This means that the antenna array can capture EM signals with a specific

direction-of-arrival (DOA) and using similar methods, reject EM signals impinging with

a specific DOA. Figure 2.1 depicts the situation under study. Beamsteering and nulling

proves very useful in complex environments full of targets, jammers, and clutter such as

that depicted in Figure 2.1.
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The ability of an antenna array to steer and null are tied to two important concepts.

These concepts are the phasor form of the EM wave and the relative spacing and phasing

of the antenna elements.

2.3.1.1 EM phasor form. The phasor form of the EM plane wave is

e(r,t ) = Soei(,tk T r). (2.16)

In this form, the amplitude of the EM wave is E0 and t represents its temporal dependance.

Since the phasor notation denotes a sinusoid, w is known to be the temporal frequency of

the EM wave. The temporal frequency describes the number of periodic cycles through

which the EM wave traverses in each unit of time. As a plane wave traveling in space and

oscillating in time, the EM wave also demonstrates spatial dependences through

r = [ry r, rz]T (2.17)

where each element of the vector represents a distance in an orthogonal direction. The

three-dimensional unit vector is

. - [1 1 1]T.

Just as t and w describe the temporal dependence of the EM wave, r and k describe the

relationship, in space, between EM wave periods and distance. The three-dimensional

spatial frequency is given by

k 7 R ,YA (2.18)

The three-dimensional wavelength may be written in similar terms as

X=21r [ 11 ]T (2.19)
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The spatial frequency is written in terms of the element-by-element inverse of the EM

wavelength A in each of the three orthogonal directions. The spatial frequency describes

the number of EM wave periods contained in a given three-dimensional spatial distance.

2.3.1.2 Element spacing and phasing. The second important concept in

beamsteering and nulling involves the antenna element spacing and phasing. The velocity

at which an EM wave propagates through space is given by

V = 1 (2.20)

and is tied to the intrinsic properties of the medium. These properties are the permittivity,

e, and the permeability, p. The direction of propagation, is directly related to the spa-

tial frequency and consequently, to the component of the wavelength in each orthogonal

direction. The direction of propagation is given by

r _\P_ [_ . AVP AV,.]T (2.21)

vp= TIAvpI I = +A2  +A2

The EM wave velocity, an expression of distance traveled per unit time, may be expressed

in terms of both the temporal and spatial frequencies as

VP (2.22)

The antenna element spacing is normally fixed based upon AV,. A linear antenna

array consists of a series of N antenna elements spaced at distance

d = 1 A = [d: 4 d d]T. (2.23)

The spacing of the elements in the the three orthogonal directions id given by d4, d,

and d,. The relationship between d and AvP prevents grating lobe interference. The half-

wavelength spacing ensures that the spatial sampling rate ks,,mp is twice that of the signal
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spatial frequency k,. This relationship is summarized by

ksamp 27= 1 I

27r2 2 2 IT
k; x.- x;

=2kV. (2.24)

The linear antenna array pictured in Fig. 2.2 is located in the vicinity of the propagating

EM wave el(r, t) having velocity vpr and direction given by kp,,. An EM wave propa-

gating in this way will impinge on antenna element #0 first. It will then contact element

#1, then #2, and so on.

EM PLANE WAVE

ejr(r4t)

N -

" " " \ \ ANTENNA ARRAY

#0'0 #11 #20 #3* . . .(N-)

d

Figure 2.2 EM wave impinging on linear antenna array.

The antenna array pattern for the array steered to k, is given by

N-1

W(R,) E w,, if-'i(k.1 -k,>Tr., (2.25)

n=0

where wv. is the weight on the nth antenna element and the vector rn represents the spatial

distances to the nth antenna element. The phase on the nth element must be

¢P1)=k•• (2.26)
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in order to receive the signal e1,(r, t) [5].

2.3.2 STAP geometry and radar equations. This section introduces the orienta-

tion of the STAP platform in space as well as the orientation of the target and interference.

The section ends with an analytic description of the radar signal received by the antenna

array.

2.3.2.1 Platform Geometery. The primary goals of STAP are

"* to steer the antenna mainbeam in the direction of the target

"* to suppress interference resulting from reflected radar energy from the ground and

other clutter,

"* to suppress interference caused by airborne jammers.

To steer and null the antenna pattern based on these conditions, a geometry must exist to

map targets, clutter, and jammers in space. The unit vector

P(€, 0) = cos 0 sin €: + cos 0 cos Og + sin Oi. (2.27)

points to the region in space at € azimuth and 8 elevation with respect to the antenna

platform. The vector P represents a spherical to rectangular coordinate transformation

and may also be written as the column vector

p = [cos 0 sin € cos O cos € sin O]T. (2.28)

Figure 2.2 depicts the antenna array in reference to the impinging EM wave. Notice that

in this definition, ý points in the direction of the curve from the y-axis to the x-axis.

Azimuth, however, is still defined in terms of ý and elevation corresponds to 8. This is

a similar geometry to that used by Ward [17]. Table 2.1 lists the symbols used in this

document. Many of these symbols are defined in the following sections.

2.3.2.2 Array geometry. The STAP algorithms developed in this document

revolve around a one-dimensional antenna array. Keeping in mind the geometry introduced
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Table 2.1 STAP Symbiology

n b STAP Symbols
L number of range bins in each PRI
M number of pulses in each CPI
N number of array antenna elements
d distance between antenna elements
p radar return element direction
X1 space-time returns for the 1th range

X1 space-time snapshot
Xa• vector of antenna samples for pulse m
xtn vector of pulse samples for antenna elemnt n
Xn,m,l single complex valued CPI datacube sample
wo, 2 7rfo radar standard frequency
A0  radar standard wavelength
Gt(O0 ,) antenna array transmit power pattern
g(0, 0) antenna element transmit power pattern
No array element receive noise power spectral density
Lt transmission losses
L, reception losses

in Sec. 2.3.2.1, the antenna array is oriented in the $ direction and has N antenna elements.

These antenna elements are numbered as [0,1,... , N - 1] and have a spacing, d, based

on the operating frequency, fo, and Eqn. (2.23). The vector pointing to the nth antenna

element is

r,=nd= ]00 . (2.29)

Figure 2.2 depicts the antenna array and the relevant direction vector.

2.3.2.3 Antenna pattern. Balanis points out that the beamsteering perfor-

mance of the antenna array is tied to two primary components [1]. The two components

are the antenna array pattern as well as the antenna element power pattern. The overall

pattern is given by

[Pattern]totai = [Array Pattern] x [Element Pattern] (2.30)

= Gt(0, 0) x gt(0,¢). (2.31)
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Sec. 2.3.1 presents the development of achieving the desired aa'ray pattern through element

phasing. From Eqn. (2.25), the array pattern is given by

Gt (0, 0) = W (k8,). (2.32)

In this document, the element pattern is given as

_f (0 ) Cos0 -90O < 0 < 9Q0'(3)

bg cosqS 9 0' < < 2700

where bg is the backlobe gain equal to -30 dB. The resulting antenna element power pattern

is given as g (0, 0) = I f (0, 0) 12.

Figure 2.3 exhibits the various overall antenna patterns used in this study. The 32

element, 64 element, and 200 element patterns are shown, steered broadside, on a dB scale.

Notice the improvement in the antenna pattern focus as the number of antenna elements

increases.
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Figure 2.3 Overall antenna pattern for various numbers of antenna elements. The an-
tenna array is steered to broadside and has a gain of 22 dB.
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2.3.2.4 Basic radar parameters. The dimensions of the coherent processing

interval (CPI) define a number of important radar parameters. The radar CPI is composed

of a series of M pulses transmitted by the N elements of the linear antenna array. The

pulse spacing, or pulse repetition interval (PRI), is defined by

TP -- 1/f", (2.34)

where f, is the pulse repetition frequency (PRF). This series of pulses is modulated by a

signal at the radar operating frequency fo. The length of the CPI coherence window is

TCPI = MTP. (2.35)

The range sampling rate is

f P (2.36)
2R,

and is fixed based on the desired unambigious range &•. A single radar return, sampled

at f8, is divided into L range sections or bins. All the information from,

* N antenna elements

* M pulses

e L range bins

may be organized into a datacube. Figure 2.4 depicts the CPI datacube. A slice of the

cube at the 11h range bin yields the N x M space-time snapshot. This information may be
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MN samples for
this range gate

N-i

ANTENNA
ELEMENT RANGE

00
0 PRI M-1

Figure 2.4 The CPI datacube structure represents the data received by the radar array
on the N antenna elements over M pulses. The sampling rate gives resolution
leading to L range bins. One slice of the cube represents the data from one
range bin and holds MN samples of data. This slice is called the space-time
snapshot.

represented in an N x M array,

X = [x 8o x ... XM_] (2.37)

T

= t (2.38)

SXT-1

X00,1 X0,1,l ... XOM-1'I

XIO,/ xIII .. •• xiM-Ij=l,(2.39)

XN-1,0,1 XN-I,I,! ... XN-1,M-I,!

composed of samples, x•,m,!, from the nth antenna element, the mth pulse and the Pth range

bin. The vector xt, is the set of pulse samples for the nth antenna element. The vector

xS,, is the set of antenna element samples taken on the mth pulse.
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Working with vectors offers more flexibility than performing operations on arrays.

For this reason, the array X1 is reconfigured to form the space-time snapshot. The space-

time snapshot takes the form

X8 0

Xs1

X1 = " (2.40)

XSM_1

and comes about by stacking the set of element sample vectors. The space-time snapshot

is a key expression in the remainder of the STAP algorithm development.

2.3.2.5 Received power. In radar systems designed for target detection, the

magnitude of signal power received has a significant effect on performance. The received

signal power is a function of the received signal amplitude ce,. Since the received waveform

is a reflection of that which is transmitted, the received signal power is also a function of

the transmitted signal power. The energy transmitted at time t is given by

Et(t)= E Ist(t)12, (2.41)

transmitted
pulses

where st(t) is the transmitted signal. The transmitted energy comes from summing the

power in the pulses of the transmitted signal st(t). The total transmitted power is a

measure of the average energy transmitted over the CPI. The total transmitted power is

t = M1 Et(t)dt. (2.42)

The transmitted power is an important factor in calculating the received signal-to-noise

ratio.
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2.3.2.6 Signal-to-Noise Ratio (SNR). The received signal-to-noise ratio

(SNR) for some object in space is

Pobi
Pbo=j (2.43)•= PN'

where Pobj is the received signal power reflected by the object and PN is the receiver noise

power. Assuming the individual antenna element receiver noise is known to be a2, the

individual antenna element SNR provides enough information to calculate the received

power.

Equation (2.42) gives the power of the transmitted signal as Pt. Using the information

about the transmitted power, the received SNR on each element for an object in the radar

space is

6obj = PtTpGt (Oobj, Oobj)gt (Oobj, 0t0ob)(2.4ob)
(47r) 3NoLtLRR4ob, (2.44)

where oobj is the radar reflectivity, or radar cross section (RCS), of the object and Robj is

the distance of the object from the radar platform in meters. See Table 2.1 for definitions

of other terms in the SNR equation. This SNR expression is given by the radar range

equation [15]. The mean signal amplitude may be derived from eobj as

Ciobi = VobjO"2 . (2.45)

A number of statistical quantities presented later use the quantity 0obj.

Equation (2.44) demonstrates how an object's distance (Robj), direction (b0 bj, 0 obj),

and radar reflectivity (oobj), affects its SNR (&ob). In the same way, location and reflec-

tivity characteristics for targets affect the target SNR. The target SNR, from the radar

range equation, is

- PtTpGt(O0t, t)gt (0t, Ct)A A2t
( 248)3NoLtLR 0 (2.46)
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Similarly, with reflectivity acp and distance Robj the clutter-to-noise ratio (CNR) for the

cpth patch of clutter is

= PtTpGt (Oc, ¢cp)gt (Ocp, 0p) (2.47)
(47r) 3NoLtLRc (

For ground-based antenna arrays, clutter is normally situated at low elevation angles.

In this study, target returns which propagate through the greatest turbulent distance are

of the most concern. These target returns also correspond to low elevation angles. Clutter

may also be assumed to be evenly distributed in azimuth and may be modeled as a set of

independent, equivalent clutter patches. The size of each clutter patch corresponds to the

azimuthal resolution of the scanning antenna array. The number of patches is

N, # of patches =3600 (2.48)
azimuthal

resolution

(in degrees)

2.3.3 Steering vectors. In order for an antenna array to receive returns from

targets, jammers, or clutter it must steer its mainbeam in their respective direction. Only

EM energy transmitted in the direction of a reflecting object will generate a return signal

from that reflector. Therefore, the antenna must first steer its transmission in a desired

direction. In order to receive the return reflection signal, its receive mainbeam must also

steer in that direction. This steering is accomplished in both space and time. By applying

elemental phases to antenna elements (space) and waveform pulses (time), the array may

steer the transmit or receive beam. In effect, the array filters the signal in space and time.

The result is a beam with a relatively large gain in the desired direction at the desired

Doppler frequency.

This beam steering is accomplished using steering vectors. The spatial and temporal

steering vectors point the array mainbeam towards a certain azimuth and focus on a certain

Doppler frequency, respectively. Combined they form the space-time steering vector which
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performs both steering functions. The spatial steering vector is

0
ej27r(1)i9o

ae2=r(2)t° (2.49)

ej21r(N-1)i9.

The spatial steering vector contains the phases which must be applied to each of the N

antenna elements in order to steer the mainbeam in the (0,, 0,) direction stipulated by the

spatial frequency k,. Another form of the spatial frequency is

_k~d d
7" = = - cos 08 sin¢8 . (2.50)
AO AO

Similarly, the temporal steering vector is

0

ei2 1r( 2)M ) , (2.51)

where

(2.52)

is the normalized Doppler frequency corresponding to the Doppler frequency of interest

f,. The phases contained in b(w 8 ) are applied to each of the M transmitted pulses.

Taken together, the spatial and temporal steering vectors form the space-time steer-

ing vector. The space-time steering vector is

v,(WS,' 8 ) = b(w 8 ) ® a(tO8 ). (2.53)
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2.3.4 STAP statistical quantities: vectors and matrices. The signal processing

for STAP is best done in vector and matrix form. To aid the development in this form, the

expressions introduced in Sec. 2.3.2.4 are reconfigured so that the data appears in a new

form. Equation (2.40) describes the space-time snapshot, a vector of sampled radar returns

from a certain range bin in the radar space. This vector, X, comes about by stacking the

columns of a slice from the CPI datacube.

The vector X represents the radar return. This vector may be rewritten as

X = at•vt + X 4+ X. (2.54)

Here, vt is the space-time steering vector of the received target signal and at is the ampli-

tude of the received signal. The other quantities are space-time snapshots for the jammers,

clutter, and noise. These snapshots may be combined to form

X = atvt + XU, (2.55)

where Xu is the space-time snapshot for the undesired components. Each snapshot gives

the signal power and phases for a particular interferer.

A statistical quantity representing the covariance of the undesired signal compo-

nents in spatial angle (azimuth) and temporal angle (doppler frequency) is the space-time

covariance matrix,

= E[xuxt]. (2.56)

The space-time covariance matrix of the undesired signal components may be written as

a combination of covariance matrices originating from different interference sources. The

interference-plus-noise covariance matrix is given by

Ru = Re+R.

= E[XýX'] + E[X.X{I. (2.57)
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The clutter space-time snapshot, X,, for a single elevation angle comes about from

the sum of space-time return steering vectors in the various azimuth directions. For a

ground-based antenna, there is no Doppler shift for clutter returns so it is assumed that

the normalized Doppler for clutter is w, = 0. The clutter space-time snapshot for all N,

clutter patches is

Nc

Xo= E iv(•, W)• (2.58)
cp=1

The signal amplitude of the cpth clutter patch with spatial frequency OCP is aP The clutter

signals are independent identically distributed (iid) so the clutter covariance matrix is

written as

Rc = E[XXcH']

= a' ý•PV'PVH
cp=1
Nc

- 02 E p(bpbH) ® (acpaH), (2.59)
cp---1

where acp, bop, and vp are the spatial, temporal, and space-time steering vectors for the

cpth clutter patch. Another form for Rc uses the matrix of clutter patch space-time steering

vectors defined by

Vc = [v1 V2 ... vNJ, (2.60)

and the diagonal matrix of Nc clutter patch return powers,

"EC a2 × (2.61)
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Once again, assuming the clutter is iid, an equivalent expression for the clutter covariance

matrix is

,o = Ro .EVHC (2.62)

The noise covariance matrix, RP is the most straightforward of the three. Noise, in

STAP processing, means antenna element receiver noise and is assumed to be an indepen-

dent process in space and time. So the full rank noise covariance matrix is

Rn = L2 (IND®IM)

= a 2 IMN. (2.63)

The interference-plus-noise covariance matrix P, is typically not well known and

must be estimated from available data for use in the STAP algorithms. Since R1 is not

always available, the best alternative is an estimate of the interference-plus-noise covariance

matrix. A covariance estimate may be obtained through Monte Carlo simulation. By

assembling K, interference-plus-noise snapshots, the estimate of the covariance matrix is

E XX (2.64)

2.3.5 Forming STAP weight vectors and measuring performance. The final goal

of applying STAP algorithms is to create a vector of antenna element and pulse weights

which steer the beam and null out interferers and noise. A number of methods to generate

this weight vector exist. These methods vary in their robustness and subsequently, their

computational intensity. The level of computational load for the various methods is directly

related to the size of the problem solved in their weight generating algorithms.

Fully adaptive STAP generates the weight vector using the full dimensionality of the

spatial and temporal vectors. It provides the best matched weight vector but levies the

greatest computational requirements for processing. Partially adaptive STAP covers four

different weight generation methods:
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"* Element-Space Pre-Doppler

"* Element-Space Post-Doppler

"* Beam-Space Pre-Doppler

"* Beam-Space Post-Doppler.

These weight generation methods each employ some sub-dimensional technique. Methods

which perform spatial filtering prior to adaptation (weight vector generation) are known

as beam-space methods. Methods which perform temporal (Doppler) filtering prior to

adaptation are known as post-Doppler methods. Either of these methods, applied sep-

arately or together, are designed to reduce the size of the weight generation problem in

adaptive processing. Those methods which perform Doppler filtering using less than the

full complement of M pulses after adaptation are known as pre-Doppler methods.

Regardless of their focus, STAP methods produce weight vectors through a variety of

methods. The following sections examine the algorithms for developing the weight vectors

in the Joint Domain Optimum (JDO) fully adaptive method and the Factored Time-

Space (FTS) partially adaptive method. The vector formation algorithm is followed by a

development of the signal-to-interference-plus noise ratio (SINR) performance measure.

2.3.5.1 Forming the weight vector. Adaptation results in the creation of a

weight vector which steers the beam and nulls out noise and interferers. To meet this goal,

the weight vector is generated, accounting for the target location and the statistics of the

interference. The weight vector is calculated using

"* the inteference-plus-noise covariance matrix R,

"* the space-time steering vector v,.

The general concept in STAP processing is presented in the following text.

The K x MN projection matrix T transforms the full-dimension space-time snapshot

of the interference-plus-noise into

4= THX. (2.65)
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The resulting covariance matrix is

= E[THX.XH T]

= THE[XUXH]T

= T HRT. (2.66)

Similarly, the covariance estimate is

= T HAT. (2.67)

The new forms of the covariance matrices, R, and R1, are the results of a transformation

into a lower-dimension space. In this lower-dimension space, adaptation may be performed

with fewer computational steps. The K-length sub-dimensional steering vector is

8  = T Hv' (2.68)

= f(Wb) D it(t). (2.69)

In the case of the fully adaptive STAP method known as Joint Domain Optimum

(JDO), the projection matrix is simply

T = IMN.

This projection matrix does not reduce the size of the covariance matrix or the steering

vector.

The calculations to produce the full dimension weight vector w and the reduced

dimension weight vector * are presented in detail in Sec. 2.3.5.3 and those following.

However, the basic form used to generate the weight vector is

Z-1
R= ÷. (2.70)
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The projection matrix T is used to transform the MN-size problem to a smaller K-size

problem. The resulting weight vector * may be transformed into the MN-length vector

w by reapplying T. The full size weight vector is given by

w = T*. (2.71)

2.3.5.2 Measuring performance. The quality of the weight vector produced

by any one of the STAP methods may be gauged using performance metrics. The most

common performance metric is the signal-to-interference-plus-noise ratio (SINR). Just as

the name states, this scalar statistical quantity represents the signal power captured with

respect to the interference power and noise power captured. A measure of signal power

captured to interference power and noise power captured is given by

Pt SE[IwH(crtvt) 12]
P= E[Iw-x.12 ] (2.72)

The general expression for the SINR of a non-random signal follows as

SINR(ý, w) = E [2 IwHV(I ,W1 2  (2.73)

= a2 E[Iw-V(O'ZV)12] (2.74)

E[wHx.xHw]

a w I W H V(IE[X Wlw (2.75)

WHE[XuXHI]W
= • 2'IwHv(O',)12 (2.76)

WHRPUw

The SINR expression may be used to establish the effectiveness of the weighting vector

at pulling the signal from the return (numerator) and nulling the interference and noise

(denominator). Since the target location in azimuth is usually known but its velocity is

not, a common performance metric is to examine the SINR for various doppler frequencies

at the target azimuth. The modified SINR expression is

SINR(wi) lwHv (2.77)
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A weight vector resulting in a large SINR implies that weight vector performs better in that

interference environment than a weight vector yielding a smaller SINR. The expression for

the SINR in the partially adaptive case is referenced by the output of the meh Doppler

composite weight vector wm to give

SINR,(w) = w t ) w 2 (2.78)
WMHRuWm

The total SINR for partially adaptive STAP is given by

SINR(w) = 2 w vM, ) J (2.79)

max value of m = 0,1,... , M - 1

Here, the SINR at each Doppler frequency is taken as the output from the Doppler filter

with the highest value at that Doppler.

Another common performance metric is the SINR Loss. The SINR Loss represents

the loss in performance due to interference. The SINR Loss is given by

LsivR = SINR(w) (2.80)
SNRo

The optimum signal-to-noise ratio (SNR) is used as a standard for comparison and is

calculated by

SNRo = MN•t. (2.81)

This expression is derived from the full integration gain over space and time in full dimen-

sional STAP. Figure 2.5 depicts the LSINR plot for optimal, fully adaptive STAP. In this

figure a new weight vector is formed to match the target signal at each Doppler frequency.

This method is used to compute the SINR and LSINR throughout this study. The result

is good performance across all Doppler with heavy nulling at 0 Hz Doppler. This heavy

nulling is directed at the clutter located over all azimuth at 0 Hz Doppler frequency.

2.3.5.3 Joint Domain Optimum (JDO) STAP. Joint Domain Optimum

(JDO) STAP is a fully adaptive method which involves taking the product of the space-
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Figure 2.5 Baseline LSINR for fully adaptive STAP. Processing performed on 32 antenna
elements and 10 pulses.

time steering vector and the inverse of the full dimension undesired covariance matrix

estimate. This product gives the MN-length weight vector,

w = ft;'v8 . (2.82)

Figure 2.6 depicts the JDO scenario. Most antennas incorporate some sort of Doppler

filter so this is shown in Fig. 2.6. The weighting scheme is created in the fully adaptive

beamformer and the weights are applied to each pulse of each element in the return. It is

the most computationally intensive STAP method but JDO offers the greatest accuracy in

nulling and steering.
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Figure 2.6 Joint Domain Optimum (JDO) system depiction. Weights are calculated for

each combination of N antenna elements and M Doppler bins.

If the steering vector matches the target precisely, v, = v, and the interference-plus-

noise covariance estimate is very accurate, RA = R1,, then the SINR simplifies to

SINRoPt (w) = wHRw

&2•twHvvHw

WH R.,w
2 tvHR. IvvHR-VlV

a O2ctvHR- lv. (2.83)

2.3.5.4 Factored Time-Space (FTS): element-space post-Doppler STAP. In

element-space post-Doppler STAP, also known as Factored Time-Space (FTS), the Doppler

filtering is performed prior to adaptation. So received signals on each antenna element are

Doppler filtered independently, then the weighting scheme is applied.
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Figure 2.7 Factored Time-Space (FTS) system depiction. Weights are calculated and

applied to all elements as factors applied to the output of each Doppler bin.

In FTS processing, Doppler filtering is done non-adaptively and identically on each

element and then adaptive beamforming is performed. Figure 2.7 depicts the FTS algo-

rithm. Here the partially adaptive scheme described below is used to form the weight

vector. This weight vector is applied to a set of elements corresponding to each Doppler

bin. The Doppler focus is no tighter than the resolution of the Doppler bins.

The M x M Doppler filter bank for FTS is

F = diag(tD)U*

= [fA f1 ... fM-i]. (2.84)
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In this expression, tD is an M-length vector taper and U* is the M x M conjugate DFT

matrix. From the columns of F the M projection matrices have the form

Tm = (f 1®,IN). (2.85)

Each of these projection matrices may be used to form the components described in Eqns.

(2.66) through (2.71):

"* the reduced dimension space-time snapshot for the mth Doppler bin is

T TH(atvt) + X. (2.86)

- cti'tm + i.um (2.87)

"* the reduced dimension interference-plus-noise covariance matrix for the mth Doppler

bin is

ft -= TIHlLTm

= T(Rc + R7)Tm

= T$mVc-cVTm + 2ffmIN. (2.88)

"* the mrth M-length weight vector is

* ~ -1 -g , (2.89)

where k, is the tapered spatial steering vector given by , = D® a,.

"* thee mth Doppler composite weight vector is

Wm = Tm*m. (2.90)

41



The SINR and LSINR may be computed using expressions presented in Eqns. (2.79)

through (2.80).

2.-4 Summary

This chapter presents an overview of atmospheric turbulence principles and some

important atmospheric turbulence statistical quantities. These quantities include the phase

structure function Ds and the index of refraction structure constant C2. Experimental C2

values reported by other researchers are also presented.

The basic development of the STAP algorithms are also presented. The steering vec-

tors and covariance matrices are derived. Two STAP methods are discussed: Joint Domain

Optimum (JDO) and Factored Time-Space (FTS). The calculation of weight vectors and

the measure of their performance via the SINR and LSINR axe also presented for JDO and

FTS.
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III. Theoretical Development

This chapter introduces the effects of atmospheric turbulence on STAP. The two STAP

methods introduced in Sec. 2.3 are redeveloped for atmospheric turbulence effects. By

examining the Joint Domain Optimum (JDO) STAP method, the overall effects of at-

mospheric turbulence may be investigated. By examining the Factored Time-Space (FTS)

STAP method, the effects of atmospheric turbulence on a partially adaptive STAP method

may also be realized.

Two forms of turbulence perturbations are considered in this chapter. The first

form is known as Case I turbulence. Case I turbulence assumes the STAP processor has

exact knowledge of the statistics of the interference environment. The primary statistic to

represent the interference environment is the covariance matrix. Although the target radar

return is affected by case I turbulence induced perturbations, the interference-plus-noise

covariance matrix is unaffected beacuse it is assumed to be known and is not estimated

from the data.

The second form of turbulence perturbation examines the effects of turbulence on

a STAP processor at it estimates the interference environment. A processor of this type

would sample the radar returns to generate statistics of the interference environment.

In this situation, known as Case II turbulence, all radar returns received by the array

are perturbed by similar turbulence. Consequently, both the target return (as in Case

I turbulence) and the estimate of the interference environment will be skewed by the

turbulence induced perturbations.

For Cases I and II turbulence in JDO and FTS processing, the same performance

measures are used. These measures are the signal-to-interference-plus-noise ratio (SINR)

and the SINR Loss (LSINR) as introduced in Sec. 2.3. Throughout this chapter, the tur-

bulence perturbations will lead to modifications in the SINR, representing the performance

losses caused by the atmospheric turbulence induced perturbations.

43



3.1 Turbulence induced perturbations

This section introduces analytical expressions describing the effects of atmospheric

turbulence on the primary STAP component. This component is the space-time steering

vector, Vobi. The subscript obj highlights the fact that radar energy reflected from any

object in space is perturbed by these turbulence effects. The perturbations may occur on

target returns, clutter returns, or it may occur on received energy from jammer sources.

An understanding of the effects of turbulence on the space-time steering vector may be

used to develop an understanding of the effects of turbulence on the STAP processing.

These effects may be quantified by changes in the SINR and LSINR quantities. As shown

in Eqn. (2.80), the LSINR is simply the SINR normalized by the optimal signal-to-noise

ratio (SNR.).

In Sec. 2.3.2.4 vobj and its relationship to the space-time snapshot are introduced.

The space-time snapshot X, is made up of the M received signal pulses on each of the N

antenna elements for the 1th range bin in space. The strength and direction of arrival of

the radar return of an object are represented in X1. The strength of the radar return is

given by the signal amplitude aobj introduced in Sec. 2.3.2.5. The direction of arrival is

given by the steering vector

Vo bj = bobj ® aobj, (3.1)

where bobj and a0bj are the temporal and spatial steering vectors, respectively.

If the receiving array encounters homogeneous, atmospheric turbulence, the EM wave

will be perturbed as it passes through the disturbance. Just as Vobj is separable into

temporal and spatial frequency components through the Kronecker product, the temporal

and spatial phase perturbations are similarly separable. The perturbed steering vector is

Vobj = blobi 0 aob (3.2)

The perturbed steering vector is composed of the perturbed spatial steering vector a'obI

and the perturbed temporal steering vector bob
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3.1.1 The perturbed spatial steering vector. Atmospheric turbulence induces

refractive index variations along the propagation path of the electromagnetic (EM) wave.

These refractive index variations are manifested in a spatial phase perturbation. The

perturbed spatial steering vector may be written as the unperturbed spatial steering vector

with the phase perturbation applied. This relationship is conveyed by

a'bj = aobj ® G) (3.3)

Here, 0, is the vector of complex values representing the phase perturbation of the EM

wave along the length of the antenna array. This vector has N elements and appears as

ei•.o

, =(3.4)

where V;,,. represents the instantaneous phase perturbation due to turbulence on the nth

antenna element. The instantaneous phase perturbation *I is a random variable with

second order statistics described by the phase structure function (Ds) presented in Sec.

2.2.3.

Combining the expressions given in Eqns. (3.3) and (3.4) leads to another representa-

tion of a'obj. This representation depicts the change introduced by the turbulence-induced

phase perturbation on the spatial frequency and the spatial steering vector. This form of

the perturbed spatial steering vector is

e3 [(O)21ri9,,+b 8+ 0o]

ei[(1)2robj+081] (

W'bi =(3.5)

ej[(N--1)27r8ob+OIbNl]

where ýOobj is the spatial frequency of the object's return as defined in Eqn. (2.50).
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3.1.2 The perturbed temporal steering vector. The perturbed temporal steering

vector has a form similar to that of the perturbed spatial steering vector. Atmospheric

turbulence may cause shifting of refractive indices as a function of time. In such cases, the

perturbed temporal steering vector is

b'b3 = bobj ® 0,t. (3.6)

In this case, the temporal steering vector, bobj, is perturbed by the vector of complex values

Ot over the length of the CPI. This vector of values related to the phase perturbations is

e'to

t =(3.7)

Here, VPtm is a random variable representing the instantaneous phase perturbation due to

turbulence on the mth pulse of the CPI pulse train. The statistics of the random variable

2•bt are completely different from the statistics described by DS which was defined for 0,,.

Since temporal perturbations are assumed to be negligible at radar frequencies, no further

details are presented on Ot.

The perturbed temporal steering vector may also be written as a vector of exponen-

tials in much the same way as its spatial counterpart. Using the expressions given in Eqns.

(3.6) and (3.7), this representation is written as

ej[(0)27rzobj+'0t,]

blobi (3.8)

ei[(M-1)2-- obj+PtiM](8

where wobj is the normalized Doppler frequency of the object's return. Once again, this

form shows there is some change introduced to the measurement of the object's Doppler

frequency by significant phase perturbations in 4 t.
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3.1.3 The perturbed space-time steering vector. As Eqn. (3.2) shows, the per-

turbed space-time steering vector is a function of the perturbed spatial steering vector

and the perturbed temporal steering vector. Using the above relations, the perturbed

space-time steering vector becomes

,bj = b'b, ®,

= (bobj ® Ot) ® (aobj ® Gs)

= (b®a)®(Obt®40). (3.9)

By substituting

at- = Ot ® •a (3.10)

as the vector of space-time phase perturbations, a new expression for the perturbed space-

time steering vector is formed. This expression is

V'b, = Vobj G Oat. (3.11)

Just as in the previously discussed cases, 4st-is a vector of random variables representing

instantaneous spatial and temporal phase perturbations.

3.1.4 The space-time steering vector outer product. In computations to form

the interference-plus-noise covariance matrix and the SINR, it is necessary to compute the

outer product of the space-time steering vector with itself. In the case of a perturbed space-

time steering vector, this outer product takes a special form. The perturbed space-time

steering vector outer product is

vobjIob = (V•bj3 0 48 )(Vobj ® .,t)H
S(vobV ® 4 )(v ® 4{)

VobjV4 at (3.12)
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The outer product shown here becomes the unperturbed steering vector outer product

weighted by the instantaneous space-time phase perturbation outer product.

3.2 Case I: Target Return Perturbed, Known Interference Environment

This section investigates the effects of turbulence perturbations on the target return.

If the weight vector is formed without accounting for these effects, the steered beam will

not match the target return precisely. The SINR introduced in Sec. 2.3.5 may be used as

a measure of the suitability of the weight vector to a specific target return. In this section,

the effects of the turbulence perturbation on the target return are quantified in terms of

the SINR. This section investigates both JDO and FTS methods.

In this development for Case I turbulence, it is assumed the covariance matrix used to

form the weight vector is known. To focus on the turbulence problem at hand, it is assumed

that this interference environment consists only of clutter. Therefore, the statistics of the

undesired environment are described by

R. =R. + Rr.

It is also assumed that the target location, (Ot, wt) is known. With this knowledge, the

desired steering vector is formed as v8 = vt.

3.2.1 Case I turbulence effects on JDO. Equation (2.82) gives the expression to

form the weight vector for the JDO algorithm. This expression is repeated here:

w = RU vt. (3.13)

Figure 3.1 depicts the JDO algorithm under Case I turbulence.

The general statistical expression for the JDO SINR is described by Eqn. (2.73) as

SINRJDO(W) = E [W )t , (3.14)
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Figure 3.1 Joint Domain Optimum processor under case I turbulence: target return
perturbed; interference knownf vt and Pti are known.

where at is the signal amplitude and X,. is the interference-plus-noise space-time snapshot.

In this expression, the form of thae tatospaNowico steering vector is vt(w) = v(sti , p ).

This notation describes the return steering vector for the target located at azimuth .t as

a function of normalized Doppler w. If the normalized target Doppler frequency is fixed

at wt, the return steering vector may also be written as vt -- v(Vt, wt).

The performance of the receiver degrades if the phase of vt is perturbed while the

signal propagates over the array. Performance degradation is quantified by a decrease in

the SINR value. Since STAP involves integration over both space and time, both temporal

and spatial phase fluctuations can lead to a degradation in receiver performance. However,

as mentioned in Sec. 2.2.2, spatial phase fluctuations are of much higher frequency and

magnitude than temporal phase fluctations. Now, consider the effects of a spatial phase

perturbation on the receiver performance. Recall the linear array presented in Fig. 2.2.
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Such a perturbation would change the expected phase difference of the propagating wave

between any two points on the array. Consider antenna elements #1 and #2 as an example.

If the spatial phase difference of the propagating wave at these locations is not matched to

the phase weight difference between these elements, the resulting SINR will be less than in

the optimal case described by Eqn. (2.83). The sub-optimal SINR is to be expected since

the integration of the signal power over these elements will be less than in the optimal

case. The inner product of w and vt in the numerator of the SINR expression summarizes

the integration over the elements and pulses. The inner product may be written as

MN

WHVt W W*(i)vt(i), (3.15)

where w(i) and vt(i) are the i0h elements of the weight and steering vectors, respectively.

Figures 3.2 and 3.3 depict the resulting integration for a system where w and vt each have

two complex elements. In Fig. 3.2, the phase on the antenna element and that on the

received signal sample are matched. Subsequently, the graphical summation leading to the

output value is y0 Iw* (O)vt(O) + w* (1)vt(1) . In the case of the perturbed return v, the

output value is y= -w*(O)v'(0) + w*(1)v'(1)I. It is evident from these figures that the

magnitude of y' will always be less than or equal to the magnitude of yo. This result holds

true for vt and w of any length.

Imaginary

(O)vt(O)

Real

Figure 3.2 Geometric depiction in complex plane of two element inner product of weight

vector with target return vector described in Eqn. (3.15). The first complex
valued element of the summation is w*(O)vt(O). The second complex valued
element of the summation is w* (1)vt(1). yo is the length of the resultant vec-

tor. In the unperturbed case they sum in phase, yielding yo a the magnitude
of the output.
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Figure 3.3 Geometric depiction in complex plane of weight vector from Fig. 3.2 and
the perturbed space-time steering return. The phase difference due to the

perturbation is V0. The magnitude of the output value is yo. The dotted circle
represents the possible locations of the w Hvt resultant given some unknown

phase perturbation. For all points on the circle: yo > y0f.

Equation (3.11) describes the turbulence perturbed space-time steering vector return

as v•. The effect of Case I turbulence on the receiver performance is seen by inserting v'

into the expression for the SINR presented in Eqn. (3.14). This expression for the system

performance, with the target return perturbation is

_ ltI
2wH v IH

S~hRýýDO E- E 1 H X tf WJ

%tWHE~v'V1H]WwHE vw (3.16)WHR,,,w

where o-2 is the noise power and et is the target signal-to-noise ratio. The SINR quantity

involves the outer product of the return space-time steering vector, v.v' . Section 3.1.4

describes the result of taking the outer product of v'. Equation (3.12) from Sec. 3.1.4

allows a simplified SINR expression. The expression for the perturbed SINR becomes

SINRDO = a2%wH/E[(vtvH (D ObtoH)lw
SINRwwDO t at (3.17)

wHRUw
a 2 ewWwH(vtV( O ®E[OtoH])wwt w a (3.18)
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From Figs. 3.2 and 3.3 and the corresponding discussion, it is obvious the SINR is

affected by the perturbations on the target return. The inclusion of the phase perturbations

on the target return disrupt the matching between the return steering and weight vectors.

The greater the phase perturbations, the greater the mismatch and the smaller the output

power. Keeping this in mind, Eqn. (3.18) demonstrates that the numerator of the SINR

with the target return perturbation will be a smaller quantity than the numerator of the

unperturbed SINR in Eqn. (3.14).

To further demonstrate the relationship between SINRoPt and SINR~!DO, examine

Eqn. (2.83). It demonstrates that the optimal SINR is

SINRt= - v R tvv RlvU (3.19)

= Vt2 v V t. (3.20)

SINRopt is achieved by applying w in a turbulence-free environment. Substituting the

optimal weight vector into Eqn. (3.18) results in a perturbed SINR. This expression is

SINR!JDO = ~~WHRvjI

U2 VwR- 1(vtvH G E[O't.O])Rw 1vt

otvj''(tv R0'u~v

vt lVt ] (3.21)

The expressions in the denominator of Eqns. (3.19) and (3.21) are identical. There is

no change expected in the denominator since in this situation, the turbulence induced

perturbations do not affect the weight vector. In the case of the numerator of Eqn. (3.21),

Fig. (3.3) demonstrates the result of a mismatched weight between the phases of w and

vt.

Case I turbulence has an effect under all manners of STAP processing. FTS algo-

rithms include a sub-dimensional adaptive method. FTS also sees some degradation in

performance due to atmospheric turbulence effects.
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3.2.2 Case I turbulence effects on Factored Time-Space (FTS). Section 2.3.5.4

contains information on the FTS processing algorithm. Under this method, the radar

returns on each antenna element are Doppler filtered prior to the formation of the adaptive

weight vector. Figure 3.4 depicts the FTS system in the Case I turbulent environment.

Case I turbulence does not affect the estimate of R1 so there is no change in the formation

of the weight vectors.

v8

bin - 0 0 ant

ntenna bin - 1 1 ant bin #0
"" Doppler * * Doppler Ou ut

Filtr * -~ *bin #0

Element 0 Filter 1eights•i•bin -M-1 N-1 - n

bin -- 0 0 -- ant

Antena bUn - 1 1 ant bin #1
Doppler * * Doppler

Ele en . ..Filter . - * bin #1
Element I Weights

bin M-1 N-i ant

bi -• 0o o nSDopp:; •, ' •-• bin #M-1

Emnt.1 Filter .bI:""" • •inh' #M-

Figure 3.4 Factored Time-Space processor under case I turbulence: target return per-
turbed; interference known. v, and R1 are known.

However, Case I turbulence does perturb the target return. Just as in the JDO

algorithm, the effect of the turbulence perturbation on the return may be seen in the

SINR. Equation (2.79) introduces the SINR for FTS as

SINRFTS = 0 RuWmj

max value of m = 0,1,... , M - 1
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where wm is the m h composite weight vector formed from FTS adaption after the mth

Doppler filter. Expanding this expression into a form similar to Eqn. (3.18) transforms

the SINR for FTS into

2 SINRTS 0 E[[O(,EtO])wm] 
(3.22)

max value of m = 0,1,... , M - 1

Just as in the JDO development for Case I turbulence, the denominator is unchanged by

the turbulence. The numerator, however, demonstrates a similar type of degradation to

that described in the JDO development. In the case of FTS, wm is formed from a sub-

dimensional projection of R.,. Full spatial dimensionality is retained and the entire spatial

steering vector a8 is tapered and used to form win.

Turbulence induced EM wave phase perturbations occur mainly in reference to dis-

tances in space. As shown in Sec. 2.2.2, temporal phase perturbations are minimal.

The FTS method retains full spatial adaptivity but employs Doppler filtering on each of

these spatial channels. This filtering results in an acknowledged performance degradation.

Therefore the SINR for unperturbed FTS is lower over all Doppler than the SINR for

unperturbed JDO. The greatest turbulence-induced phase perturbations occur in the spa-

tial domain while FTS processing does not reduce the size of the problem in the spatial

dimension. Therefore, the additional degradation due to turbulence effects should be very

close to that seen in JDO. FTS sacrifices SINR performance for a computational advan-

tage through reduced dimensionality. The loss in performance due to turbulence effects

should be no greater in FTS than in JDO since turbulence effects are limited to spatial

fluctuations.

It is to be expected that the SINR for both JDO and FTS would be further degraded

if the interference-plus-noise covariance matrix estimate, k., were formed using perturbed

clutter returns. In this case, k. : R.,. Forming a weight vector using an estimate in

an environment where both interference and target returns are perturbed by atmospheric

turbulence has performance consequences. The next section includes an investigation into

the performance consequences of Case II turbulence effects on JDO and FTS processing

methods. The performance is once again quantified in the SINR.
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3.3 Case II: Target Return Perturbed, Interference Estimate Perturbed

In the previous section, the undesired covariance matrix estimate is known but the

target return is perturbed. In this section, both the target return and the estimate of

the interference-plus-noise covariance matrix are perturbed. This is known as Case II

turbulence. The SINR is still used as a measure of the system performance.

It is once again assumed that the target location (tt, wt) is known. Consequently,

the desired steering vector is v, = Vt. In this case, however, the interference-plus-noise

covariance estimate is not necessarily accurate. The interference-plus-noise covariance

estimate is formed from perturbed interference returns. From Eqn. (2.82) the JDO weight

vector, without turbulence effects, is

w = R1 Vt (3.23)

To understand the effects of the turbulence perturbations on the system performance,

the effects on the undesired covariance matrix estimate must be understood. Since the

receiver noise is assumed to be uncorrelated among pulses and elements, the form of R1,

is known. Once again, to simplify the development, the interference is assumed to consist

purely of clutter returns. The interference-plus-noise covariance estimate follows the format

for R• defined in Eqn. (2.57). This format is

R =Re.+ ., (3.24)

where RA is the estimate of the clutter covariance matrix and R.,I is the receiver noise

covariance matrix. The statistics of the receiver noise are unaffected by turbulence so the

only ambiguity in the estimate of the perturbed interference-plus-nois covariance matrix is

due to the turbulence perturbations on the clutter returns. The estimate of the perturbed

interference-plus-noise covariance matrix follows as

R = R, + R,. (3.25)
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The quantity A1, may be derived from the expression for R, introduced in Eqn. (2.59).

This equation describes the formation of the clutter covariance matrix as

Re = E[X ].

Assuming that the clutter returns are independent identically distributed (iid) brings about

the modified form

Nc

= .2 Z pvcp v
cp=1
N.

= .2 E ýcp(bv~b H) (g (acpa ).
CP==

where N, is the number of clutter patches, ý, is the signal-to-noise ratio for the cpth clutter

patch and bp, ap, and vp are the temporal, spatial, and space-time steering vectors for

the cpth clutter patch.

Incorporating the turbulence effects described in Sec. 3.1 produces a new form of

the covariance matrix. This form is

= E[XoX'H]. (3.26)

Estimating R' is a primary concern. Two methods may be used. The first uses the Monte

Carlo method introduced in Eqn. (2.64). The second method relies on incorporating

the statistics of the turbulence induced phase perturbation onto the clutter covariance

estimate.

3.3.1 Perturbed clutter covariance estimate formed by Monte Carlo method. An

estimate of the clutter covariance matrix may be formed using the Monte Carlo method

introduced in Eqn. (2.64). In this expression, the estimate of the covariance matrix

is formed to represent the randomness in the clutter returns. To form the covariance

estimate, K, realizations of the space-time snapshot are used. In this situation, it is

assumed the significant contribution to the randomness in the clutter returns is due to

56



the atmospheric turbulence perturbations 4Og. Therefore, the estimate may be formed by

using T realizations of the clutter return received through the turbulent atmosphere. The

estimate has the form

R'= ' (3.27)

The Ith space-time snapshot of the clutter return received through the turbulent atmo-

sphere is given by X' . Once again, the accuracy of the estimate is tied directly to the size

of T. For a dependable covariance estimate, T should be twice the number of degrees of

freedom (DOF). For STAP, the DOF equals the product of the number of antenna elements

and the number of pulses. The rank of R, is MN so 2MN realizations may be used to

form ft.. Similarly, the number of realizations of the perturbed clutter returns needed to

form Ac is

T = 2 x rank[R'j. (3.28)

Substituting the description given in Eqn. (2.59) for Xc, gives

[Ný Nc
, = E a z I1V ecp2iV H (3.29)R~ = E E oP11v CP1 c2,vp

cpl:=l cp21- 2-1
Assuming the clutter returns and the turbulence induced perturbations are uncorrelated

from azimuth bin to azimuth bin results in the simplified expression

R ---f ,:,v PB V., . (3.30)

=1CPj=1

Introducing the outer product of the perturbed space-time steering vector from Eqn. (3.12)

gives the estimate the form

AC T ýC(vc',jv•, ® E)o0btoj ) , (3.31)
1=1 1cp,=1

57



where is the space-time phase perturbation for the Ith sample of the clutter patch in

the cpth azimuth bin.

Forming an accurate covariance estimate is an arduous task. Performing the op-

erations described above T times is very processor intensive. A less intensive method is

described in the following text. The method described in the following text uses a statistical

representation of the turbulence to form the covariance estimate. Using a statistical rep-

resentation of the turbulence renders the Monte Carlo method of estimation unnecessary.

The resulting processing requirements are lessened and the resulting clutter covariance

estimate is statistically accurate.

3.3.2 Perturbed clutter covariance estimate formed by statistical representations.

Equation (3.26) describes the perturbed clutter covariance matrix in its statistical form.

By staying mindful of the statistical properties of the elements which form the clutter

covariance, an accurate clutter covariance matrix may be formed.

Substituting the expression for the clutter space-time snapshot from Eqn. (2.59) into

Eqn. (3.26) gives

= E[xlx XH

N. N.

- E ' H'" (3.32)
[cpl1 cp21 I

Once again, the assumption is made that the clutter returns and the turbulence pertur-

bations are independent among azimuth bins. The expression for the perturbed clutter

covariance becomes

6V= E I V . (3.33)

Including the expression for the outer product of the perturbed space-time steering vector

introduced in Eqn. (3.12) further changes the expression of the perturbed clutter covari-
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ance. This new expression is

R'= E [ &cp(v vH G O.'t 4H (3.34)= v'Pv ®P •sodstop
Lcp=l

Assuming the unperturbed clutter returns are deterministic values allows the expected

value operator to be moved within to form

No

R'o= e E[(vov( ® oo(3.35)

No

= cP(vCPv ® E[ ,o, • I). (3.36)

cp=1

Since the turbulence perturbations are independent from azimuth bin to azimuth bin, the

expression for the clutter covariance matrix further simplifies to

No

R'o=• Gv)v E t H, t (3.37)
cp=l

Recall the phase structure function introduced in Eqn. (2.11). The expression

D =t-- E[OýstOH] (3.38)

is related to the phase structure function and is called the space-time perturbation matrix.

The estimate of the clutter covariance matrix follows as

NC

e'o = v H ® Dgt
Cp=l

= R G®DD. (3.39)

Computing the unperturbed clutter covariance matrix and deriving an accurate repre-

sentation of the phase structure function for the turbulence at hand gives a statistically

accurate estimate of the perturbed clutter covariance matrix. With this estimate, the effect

of turbulence on system performance may be seen in the SINR. The Case II turbulence

effects on JDO and FTS are presented in the following two sections.
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3.3.3 Case II turbulence effects on the SINR. The expressions derived above may

be applied to the calculations used to form the SINR. In this way, the effect of turbulence

on the system performance may be expressed analytically.

Once Rc' is formed, the estimate of the perturbed undesired covariance matrix, R^,

may be formed. Equation (3.25) defines R1u as

f I = ^1o

For Case II turbulence, Wu4 becomes

A' = (Re ® D.t) + Rn. (3.40)

Using RU, expressions may be formed for the SINR in various STAP methods. The next

two sections examine JDO and FTS under Case II turbulence conditions.

3.3.4 Case II turbulence effects on Joint Domain Optimum. The weight vector

is formed using the expression in Eqn. (2.82). This expression is

W , IlV,

The weight vector formed in the presence of Case II turbulence follows as

w R= Vt

= {(R.G ® Dt) + R.}-lvt. (3.41)

Figure 3.5 depicts the JDO algorithm under Case II turbulence.

Equation (3.18) shows the effect of a perturbed target return in terms of the SINRWDO.

For Case II turbulence, both the target return and the undesired covariance estimate are
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is an overriding factor preventing minimization in the denominator of SINR'JDO. For

heavier turbulence conditions, the interelement phase variance represented by D8 t grows.

This additional perturbation on R-'1 further complicates minimization of the denominator

of SINRJDO.

The performance of SINR"DO is driven further from SINRpt by the expression in

the numerator,

num(SINRJDo) = a ^tvt U(VtVt D Dg) tRW7 1 vt. (3.46)

Including the expression for RU-1 transforms the expression for the numerator into

num(SINR•Do) =

o2 tv,'{ (R.0  Dg) + R.}• 1-(vtvH G Dst){ (R, D D ) + R.}-lvt. (3.47)

With heavier turbulence, the effect of D8 t grows, thereby degrading the STAP performance.

JDO performance degrades under Case II turbulence effects. Similarly, FTS per-

formance also experiences similar performance losses. In fact, this is worth investigating

because the performance losses introduced by turbulence effects in partially adaptive meth-

ods such as FTS may be more significant than in fully adaptive methods. The following

development introduces the effect of Case II atmospheric turbulence perturbations on the

FTS processing scheme.

3.3.5 Case II turbulence effects on Factored Time-Space (FTS). Section 3.3.2 de-

scribes the effects of Case II turbulence on the statistical representation of the interference

environment. Section 2.3.5.4 introduces the details behind FTS processing. Analyzing the

effects of Case II turbulence on FTS processing is more complicated than the analysis of

Case I turbulence effects on FTS. This greater complexity comes about from turbulence ef-

fects on both the target return and on the estimate of Ru. These turbulence perturbations

on the estimate of R1 affect the formation of the FTS weight vectors. Figure 3.6 depicts

the FTS processor in the presence of Case II turbulence. As the diagram illustrates, the

measure of the interference as well as the target return are perturbed by the turbulence
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effects. These effects influence the system beamformer and are reflected in the Doppler

bin outputs.

turbulence
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Figure 3.6 Factored Time-Space processor under case II turbulence: target return per-
turbed; interference perturbed. v, is known.

The Case II turbulence effect is a specific concern in FTS processing because the

weight vector, even under ideal conditions, is formed using the projection of R1 into a

smaller signal space. Under Case II turbulence, the projection of R^ certainly leads to

further performance losses. The following development examines the FTS algorithm with

Case II turbulence effects added.

Equation (3.40) introduces the estimate of the undesired covariance matrix under

case II turbulence as

S (Re ®D Bi6 ) + R..
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The expression for the FTS projection into the smaller dimension is given in Eqn. (2.88).

The projection matrix for the mth Doppler bin is given by T.m. Applying this relation to

R gives

Rum - TMRUTm (3.48)

= (f9 ® IN)HRI(fm 0 IN) (3.49)

= (fin ® IN)H{(Rc 0 Dat) + R.}(fm 0 IN). (3.50)

From this expression, the adapted weight vector is formed as shown in Eqn. (2.89). The

adapted weight vector is

' = RUM•. (3.51)

The SINR performance depends upon the composite weight vector. This is obtained by

applying Tm to the adapted weight vector to project it back to the full dimension signal

space. The composite weight vector under these conditions is

W1 = Tm*m. (3.52)

= TmRu. gt. (3.53)

Finally, inserting w' into the expression for the SINR gives a measure of performance.

The SINR for FTS under Case II turbulence effects is

S]tw RE[TS( t I St)M (3.54)

max value of m = 0,1,... , M - 1

= c�, • t"wH •-DHt)w.] l (3.55)

max value of m = 0,1,... ,M- 1

Once again, as in the JDO algorithm under Case II turbulence, the target return pertur-

bation combined with the misformed weight vector affects performance. Combined with

the implicit performance loss introduced by FTS processing, Case II turbulence produces

the greatest performance degradation in FTS systems.
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3.4 Summary

In this chapter, the effects of atmospheric turbulence are described analytically in

terms of the SINR. The effects of two different situations involving atmospheric turbu-

lence are examined. Case I turbulence involves an accurate statistic for the interference

environment but a target return perturbed by turbulence effects. Case II turbulence in-

volves a STAP processor faced with both a perturbed target return and a lower quality

estimate of the interference environment due to turbulence induced perturbations. Both

situations for the turbulence effect are examined under Joint Domain Optimum and Fac-

tored Time-Space processing. The analysis revealed performance degradations under both

STAP methods for either Case I or Case II turbulence. The analysis also revealed that the

heaviest performance loss is probably in a situation involving Case II turbulence induced

perturbations on Factored Time-Space processing.
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IV. Method

The goal of this study is to develop an understanding of the effects of atmospheric tur-

bulence on Space-Time Adaptive Processing (STAP). This chapter describes the method

used in simulation to focus on atmospheric effects on STAP.

To obtain statistically significant results, the effects of atmospheric turbulence are

best studied in simulation. Following the developments presented in Chapter III, STAP

processing may be simulated in the presence of turbulence effects. The simulations provide

quantitative measurements of the effect which turbulence has on the statistics of the radar

environment and on STAP performance. As Chapter III points out, some useful measures

of STAP performance are the SINR and LSINR. The SINR is the signal-to-interference-

plus-noise ratio. The LSINR is the SINR normalized by the optimum signal-to-noise ratio.

In addition, the effect which turbulence perturbations have on measurements of the inter-

ference environment may be quantified by analyzing the interference covariance matrices.

The perturbed interference covariance matrices are formed by sampling the interference

signal in the presence of turbulence. The most telling statistic of the effect of turbulence

on interference estimation is the eigenvalue distribution of the interference covariance ma-

trix. The simulations outlined in this chapter are all geared to provide measurements of

the SINR, LSINR, and, where it is appropriate, the eigenvalue distribution under various

turbulence conditions.

To meet the goals presented in Chapter I, STAP processing is simulated for different

length arrays in varying turbulent environments. The simulations involve the following

procedure:

" simulate Joint Domain Optimum (JDO) processing without turbulence effects to

obtain baseline results

" simulate Factored Time-Space (FTS) processing without turbulence effects to obtain

baseline results

" simulate JDO processing subject to uncorrelated, Gaussian distributed phase per-

turbations to obtain results under critical turbulence
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"* create phase structure function as a statistical representation of turbulence strength

with respect to absolute distance. A phase structure function is created for each

operating frequency fo and index of refraction structure constant Cn value of interest.

"* using realizations of turbulence-induced phase perturbations formed from the statis-

tics of the phase structure function, simulate the JDO processing algorithm

- Case I turbulence (target signal perturbed, interference covariance known)

- Case II turbulence (target signal perturbed, interference covariance estimated

through turbulence)

"* using realizations of turbulence-induced phase perturbations formed from the statis-

tics of the phase structure function, simulate the FTS processing algorithm

- Case I turbulence

- Case II turbulence

The simulations described above are performed for various array sizes, frequencies, and

values of Cn. Table 4.1 provides details on the STAP geometries of the simulations as

well as characteristics of the radar and of the atmospheric turbulence. This variety in

simulation parameters ensures that turbulence effects are examined under many different

conditions.

This chapter first presents details about the simulation tools used. Subsequent sec-

tions provide details on the parameters used in the experiment, methods for simulating

the turbulent environment, and any unusual procedures or considerations which resulted.

4.1 Simulation tools

All simulations are run on a Sun workstation using MATLAB v5.0 by the MathWorks

Co.
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4.2 Simulation parameters

Examining the results of simulations conducted under various conditions, helps us

to develop a description of the turbulence effects on STAP. Table 4.1 lists the varied

parameters in this experiment and the values used in the simulations.

Table 4.1 Primary parameters for studying atmospheric turbulence effects on STAP pro-
cessing. The STAP geometries, defined by the number of elements N and
pulses M, simulate the dimensions of actual ground-based arrays. The oper-
ating frequencies also approximate radar frequencies of interest.

Category D Description I [Parametel Values
Joint Factored

STAP Domain Time- STAP

methods Optimum Space Degs. of 200 x 3 64 x 5 32 x 10
(JDOQ (FTS) Freedom

case I case 1i (N x M)
Target Target

Turbulence return return

situations perturbed. perturbed. Parameteg Values
Interference Interference
covariance covariance [ quency 3 10 30

kn own estif,•m ate~d Gz

Parameter 1 Values

C2 (m-2 / 3) I 5 x 10- 4  5X 10-13 5 X 10-12F5 x 10-11 <5 x 10-10

The antenna parameters: number of elements N, number of pulses M, and operating

frequency f,, closely approximate realistic ground-based radar systems. The C2 values rep-

resent a wide range of turbulent conditions ranging from slight turbulence (5 x 10-14 m- 2/3)

to unrealistically heavy turbulence (5 x 10-10 m-2/ 3).

4.3 Phase structure function generation

The phase structure function is formed from phase screens created using a method

developed by Welsh [14]. In this method, a Fourier Series based technique is used to

produce screens of the size of the array. These screens incorporate the statistical properties

of the turbulence to produce the phase structure function. The phase structure function

DS(p) describes the variance of the turbulence induced phase difference as a function of

the absolute distance between points along the array p.
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The theoretical phase structure function is given by

Dth~o(P) = 3.089(2r-5/36 (LO ) 5/3 ( DP) 5/3

{ - r[/6] "L 0 'o-5 /16 27-IlP } (4.1)

where LO is the outer scale of the turbulence, Dp is the periodic distance over which the

Fourier Series represents the phase perturbation, r[.] is the Gamma-factorial function,

K516 [.] is the 5/6 order Bessel function of the second kind, and ro represents the Fried

parameter.

The statistical basis of the turbulence-induced index of refraction changes come from

the index of refraction structure constant C2 and the Fried parameter. With these quanti-

ties, the phase screens are formed. By specifying C2, the propagation distance L, and the

spatial wavenumber k, the Fried parameter is calculated. Assuming C2 may be approxi-

mated by a constant, the Fried parameter is given by

F 4].
ro = 0.185 [k2f C/(z)dzJ

r k.2 f2i,,

S0.185 [k2LC 3j (4.2)

The shape of the phase structure function is dependent on the frequency fo and the

value of C2. Figure 4.1 shows a typical example of the phase structure function Ds(p)

and its theoretical value Dtheo (p). The phase structure function is formed by taking the

expected value of the phase difference over many iterations of the Monte Carlo simulation.

Reference Welsh's paper [14] for details.

The measured data presented by Hill et al. [11],[12] serves as a good reference

for determining the accuracy of the phase screen generation algorithm. Under turbulent

conditions of C2 = 5 X 10-12 they measured the received phase difference of 173 GHz

EM waves for antennas spaced 10 m apart. The resulting phase difference variance was

0.703 rad2. Figure 4.2 depicts the phase structure function created by the phase screen
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Figure 4.1 Examples of the simulated phase structure function DO(p) and the theo-

retical phase structure function Dtheo(p) are shown for fo = 10 GHz and
C2 = 5 x 10-13 m-2/ 3 . The functions are plotted against the absolute
distance expressed in terms of the half-wavelength element spacing.

generation routine run with similar parameters. It is obvious that the 10 m phase difference

variance depicted in the plot is very close to that measured by Hill.

Figures 4.3 through 4.7 show Ds(p) and Dtheo(P) for the C2 and fo parameters of

interest in this study.

After forming Ds(p), vectors of perturbed phase realizations corresponding to the

statistics in Ds(p) are created. The following section describes the procedure to create

these realizations of the perturbed phases.

4.4 Spatial phase perturbation realizations

Once Ds(p) is calculated for a certain frequency and C2 value, realizations of the

phase perturbation over the N antenna elements may be created. These realizations are

created based upon the statistics of the phase perturbations described by Ds(p) so they

realistically model the effect of turbulence on the EM wave propagating near to the array.
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Figure 4.2 Simulated phase structure function DS(p) and the theoretical phase structure
function Dtheo(P) are shown for fo = 173 GHz and C2 = 5 x 10-12 m-2/ 3 .
The functions are plotted against the absolute distance 1, represented in
steps of 5 mm. These statistics are in good agreement with measured values
reported by Hill [11],[12].

If the variance of the element-to-element phase difference is known, then a realization

of the phase perturbation may be created. Equation (2.11) draws a relationship between

the phase structure function and the element-to-element phase perturbation covariance.

This zero-mean relationship may be expressed as

Ds(p) = E[(S(f) - S(r- ))2]

= 2E[S 2 o()] - 2E[S(r-)S(r-- f4)], (4.3)

where S(F) represents the phase at location r- and p = 9- f'. So the phase perturbation

covariance is

E[S(r-')S(-- i;")] = E[S2 (0)] - (p). (4.4)
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Figure 4.3 Plots of Ds (p) and Dtheo(P) used in this atmospheric turbulence study. These
plots depict the phase structure function over N = 200 antenna elements.
The element spacing is half-wavelength. Therefore, the actual distance along
the x-axis in the plots varies depending on the frequency of the EM wave
described by the corresponding plot. Parameters used to generate these func-
tions are listed in Table 4.2. These plots are for C2 values of 5 x 10- 14 m-2/ 3 .

The phase perturbation covariance may also be written in the form of a covariance matrix

R-0. = :".x MSVp, - lToep[ds ,

NxN

where the mean squared value of the phase is expressed as the constant MSVO, = E[S2 (0)] -

0 and the values of Ds(p) over N antenna elements are held in the vector d,. The opera-

tion Toep[.] creates a Toeplitz matrix from a vector. The Toeplitz matrix in Eqn. (4.5) has

zero values along the diagonal with values increasing towards the edges of the matrix. The

computations described by Equation (3.39) to calculate the perturbed clutter covariance

matrix through statistical means may be performed by using the relation

D.t = exp (R.0, ®0RIt), (4.6)
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Figure 4.4 Plots of DS(p) and Dtheo(P) used in this atmospheric turbulence study. These
plots depict the phase structure function over N = 200 antenna elements.
The element spacing is half-wavelength. Therefore, the actual distance along
the x-axis in the plots varies depending on the frequency of the EM wave
described by the corresponding plot. Parameters used to generate these func-
tions are listed in Table 4.2. These plots are for C2 values of 5 X 10- 13 m- 2/ 3 .

where

MxM

provides for the zero temporal phase perturbation.

To create the perturbed covariance via the Monte Carlo simulation method pre-

sented in Sec. 3.3.1 and to compute the SINR under target return perturbation, individual

realizations of the phase perturbations must be computed. These realizations may be

computed by coloring the vector of uncorrelated, zero-mean, Gaussian distributed values

w - V(0,1). This coloring process is given by

= exp(jC' w), (4.7)

73



0.03 ---------------- ------- .- T . -------- - -1...... . 0.03 ..----------------------------------------- T - -----------

0.025 ---- 0.025-

36 GHz 30 GHz
0.02 -- - - - - -- - - - - - -r- - ----- 0.02 - -- - - - -- - - - - - - -

-0.015 ------------ ------------ "- .0.015 -- ...-------- - . . -ioioi i
II Ii0.005 + . z0.005 -

----- --- -- -- -1- - -

0 C-- ....

0.005 -- -----F -- -- ---- 0.005 ----- --- ---------- : , - --------- , . ..

0 50 100 150 200 50 100 150 200
antenna eleraent ant nna ent .

a) Simulated phase Btructure-tunnction Ds(p), b) Theoretical phase structure lunction Dtho(P),C2 = 5 x 10-12m-2/3 C2 
- 5 X 10-2m- 1 /

Figure 4.5 Plots of Ds (p) and Dtheo (P) used in this atmospheric turbulence study. These
plots depict the phase structure function over N = 200 antenna elements.
The element spacing is half-wavelength. Therefore, the actual distance along
the x-axis in the plots varies depending on the frequency of the EM wave
described by the corresponding plot. Parameters used to generate these func-
tions are listed in Table 4.2. These plots are for C2 values of 5 X 10-12M-2/3.

where

C0, = Cholesky[RPo]. (4.8)

The vector of complex values due to the phase perturbations is represented by 0.. The

Cholesky factorization operation on R., gives CO, such that RP, = CH•0 , holds true.

Figure 4.8 shows a set of individual realizations of the phase perturbation for the Ds(p)

shown in Fig. 4.1. Once again, the space-time vector of complex values due to the per-

turbed phases is

0"t = ot® 40,,

and in this study, the temporal vector of values due to the perturbed phases is

=t = 1M, (4.9)

a vector of M ones since turbulence effects on temporal phase variations are considered

negligible.
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Figure 4.6 Plots of Ds (p) and Dtheo(P) used in this atmospheric turbulence study. These
plots depict the phase structure function over N = 200 antenna elements.
The element spacing is half-wavelength. Therefore, the actual distance along
the x-axis in the plots varies depending on the frequency of the EM wave
described by the corresponding plot. Parameters used to generate these func-
tions are listed in Table 4.2. These plots are for C2 values of 5 x

4.4.1 Practical considerations. While performing the simulations described in

this chapter, a few practical considerations present themselves. Many of the relationships

presented in this thesis appear sound when written symbolically. However, when the

mathematics in these equations are carried out on a computer, small deviations from

theory are introduced by the limits of floating point computations.

A theoretically valid operation on a specific value or set of values may not be valid

when calculated on a microprocessor. A good example of this is the practical differences

between Equations (2.59) and (2.62). The two forms of the clutter covariance calculation

given in these equations are

Ne

cp=l

= Vc=.CVH.
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Figure 4.7 Plots of Ds (p) and Dtheo (P) used in this atmospheric turbulence study. These
plots depict the phase structure function over N = 200 antenna elements.
The element spacing is half-wavelength. Therefore, the actual distance along
the x-axis in the plots varies depending on the frequency of the EM wave
described by the corresponding plot. Parameters used to generate these func-
tions are listed in Table 4.2. These plots are for C~values of 5 X 10-1 0 M-2 /3 .

One criteria which must be met by R, is that this matrix must have Hermitian symmetry

described by

RR = R (4.10)

When Eqn. (2.62) is implemented on a computer, the output does not always meet the

Hermetian symmetry criterion. Therefore, when using this form of covariance formation,

Hermetian symmetry must be forced by creating a new covariance matrix. The new co-

variance matrix is guaranteed to be Hermetian if it is formed by

=c w R + R4') (4.11)

Under this method, Re nt, lacks the small numeric inconsistencies between its upper and

lower triangle which prevent it from being perfectly Hermetian.

Another consideration involving calculated covariance matrices appears in performing

the Cholesky factorization of the interference-plus-noise covariance matrix R,. In order

to perform Cholesky on a matrix, the matrix must be positive definite. Being positive
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Table 4.2 List of parameters used to create D(p).

"C• (m- 2/ 3) 5 x 10-14 5 x 10-1]

f (GHz) 3 I 10 I 30 3 110 30
Lo (m) 35 20 35 20
L (km) 10 10 10 10
ro (m) 4.444 x 103 1.048 x 103 280.4 1.116 x 103 263.29 170.44

C2 (m- 2 / 3 ) 5 X 10-12 5 X 10- 1 1  
5 x 10-10

f (GHz) 3 110 130 3 110 130 3 10 130

Lo (m) 35 20 35 20 35 20
L (km) 10 10 10 10 10 10
ro (m) 280.4 66.141 17.69 70.44 16.6114.444 17.69 4.173 1.116

definite means that for any vector x, its inner product with a positive definite matrix Y

follows is

xHYx > 0. (4.12)

Another criterion which a matrix must meet to be classified positive definite states that a

positive definite matrix has only positive eigenvalues. However, in forming certain covari-

ance matrices, a few small eigenvalues may have negative values.

A correction may be applied to a covariance matrix to assure positive definiteness.

This correction is given by

R . - + AsRa.I, (4.13)

where \..mai1 is one of the smallest of the negative eigenvalues. Appendix A contains a

mathematical proof describing why Eqn. (4.13) can transform a covariance matrix into a

positive definite covariance matrix.

4.5 White Gaussian phase perturbations

In order to gauge the varying effects of various scales of atmospheric turbulence, some

well understood form of phase perturbation must be applied as a test case. The measure

of the resulting performance degradation may be used to compare with the performance
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Figure 4.8 Three realizations of the phase perturbations over 200 antenna elements.
The realizations are created using D(p) calculated for f0 = 10 GHz and

n2 = 5 × 01 -/. Each of the three realizations is shifted to zero-

mean for display purposes.

degradation realized by applying simulated phase perturbations due to atmospheric tur-

bulence.

Hill et al. [11] state that the phase perturbations caused by atmospheric turbulence

effects follow a Gaussian distribution. The Gaussian distribution is therefore the best

model for creating a test case. Using uncorrelated Gaussian random variables for the

phase perturbations creates a type of critical scenario for STAP. The phase perturbations

for the test cases were created using a zero-mean Gaussian random number generator. The
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N element spatial phase perturbation vector for these test cases is

AK(0, Oet
08 "• exp j (4.14)

K(,o8e N)

where atest is the element-to-element variance of the phase perturbations. The statistics

of the white Gaussian phase perturbation are reflected in

1

•. e--t-es

D81 (4.15)

e--o-est

L 1

In this thesis, the different values of at2,.t used are (0.01, 0.03, 0.05, 0.07, 0.10, 0.13, and 0.16

rad2). These values are used because the variance of the phase perturbations generated

from the phase structure function range from 1 X 10-6 to 0.06 rad2.

4.6 Environment parameters

The environment described in Ward's report [17] is recreated for this study. Table

4.3 displays the settings of the most important parameters for the target and interference

in the simulations. Any other settings follow the environment depicted in Ward's report.

Jammers are excluded in this study so a basic analysis of turbulence effects on STAP may

be carried out with only clutter interferers.

4.7 Implementing the Joint Domain Optimum (JDO) algorithm

The JDO algorithm is implemented just as it is described in Chapter II. No taper is

added to the desired space-time steering vector. The SINR is calculated by forming a new

weight vector to match a target return for each frequency bin of the Doppler space.
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Table 4.3 The basic environment used for the simulations in this study.
Object D Parameter Setting

Target Location (Az) 00

Elevation (Az) 50
Doppler freq (Hz) 50
Range (kmi) 20

Clutter No. of patches 360
Range (km) 10
reflectivity (dB) -3

Jammers None

4.8 Implementing the Factored Time-Space (FTS) algorithm

The FTS algorithm is also implemented just as it is described in Chapter II. The

Doppler filters incorporate an 80 dB taper to ensure good FTS performance.

4.9 Summary

This chapter summarizes the procedures used to simulate the effects of atmospheric

turbulence on STAP processing. In Sec. 4.2, the details on the general simulation pa-

rameters are presented. Section 4.3 describes the method used to calcuate a statistical

representation of the various level phase screens. The statistical representation is known

as the phase structure function. Section 4.4 reviews the methods used to create perturbed

phase realizations as well as the methods to calculate, from the phase structure function,

the statistical quantities describing the phase perturbations. The last three sections de-

scribe the environment under which the simulations are run and the parameters used in

the JDO and FTS algorithms.
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V. Results

This chapter presents the results of the simulations described in Chapter IV. The simula-

tion results show the performance of the various STAP algorithms with varying geometries

and turbulent environments. These results are shown referenced against the baseline per-

formance, or the performance with no turbulence induced perturbations, for each configu-

ration. The signal-to-interference-plus-noise ratio (SINR) loss, also known as the LSINR is

used as the primary measure of performance. Comparing the LSINR resulting from each

simulation to the LSINR for the optimal case gives a quantitative measure of the STAP

performance loss under the conditions simulated.

Both Case I turbulence and Case II turbulence simulation results are given in this

chapter. Case I turbulence describes the situation in which the STAP system has a pre-

cise estimate of the interference covariance matrix but the target signal is perturbed by

turbulence effects. Case II turbulence describes the situation in which both the covariance

estimate and the target signal received by the STAP system are perturbed by turbulence.

Differentiating the effects of turbulence between these cases allows us to recognize which

effects degrades performance the most. For Case II turbulence, it is useful to examine

changes in the eigenvalue distribution of the perturbed clutter covariance matrix estimates

with different turbulence effects. The eigenvalue distribution of the perturbed clutter

covariance matrix estimates are also compared to a baseline provided by the eigenvalue

distribution of the unperturbed version of these matrices.

The results in this chapter are presented in the following order:

"* baseline (unperturbed) Joint Domain Optimum (JDO) performance

- baseline (unperturbed) LSINR

- baseline (unperturbed) eigenspectra for R,

"* Case I turbulence effects on JDO performance

- LSINR

"* Case II turbulence effects on JDO performance
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- eigenspectra for R1

- LSINR

"* white Gaussian distributed phase perturbations

- JDO performance effects of Case I turbulence simulated by uncorrelated Gaus-

sian distributed phase perturbations

* LSINR

"* baseline (unperturbed) Factored Time-Space (FTS) performance (32 antenna ele-

ments x 10 pulses)

- (unperturbed) LSINIR

"* Case I turbulence effects on FTS performance (32 antenna elements x 10 pulses)

- LSINR

"* Case II turbulence effects on FTS performance (32 antenna elements x 10 pulses)

- LSINR

The results in each of the sections of this chapter are presented as

"* plots of the LSINR across the Doppler space

"* plots of the distribution of energy among the eigenvalues

FTS performance is presented for the 32 antenna element x 10 pulses configuration

only because other configurations do not include enough pulses to ensure reliable FTS

performance. White Gaussian distributed phase perturbation effects are not considered

for Case II turbulence because this form of perturbation is highly similar to including

additional receiver noise.

This chapter uses the metrics listed above to present simulation results which high-

light turbulence effects on STAP.
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5.1 Joint Domain Optimum (JDO) Baseline Performance

Analyzing the JDO algorithm performance under turbulent conditions requires a

standard for comparison. The standard used for comparison in this study is the signal-to-

interference-plus-noise ratio loss (LSINR) without any turbulence effects. This metric is

referred to as the algorithm's baseline performance. The LSINR plots representing baseline

performance are shown in Figs. 5.1 through 5.3. The ripples in the LSINR across the

0

- 2 .......... . . ................. .... ............ ................ .... ......................... .. .

-4 .. .. . . . . .-.. . . . . . .

- 8 ................ ............... ................. ............... . ................ . ............

o 50 100 150 200 250 300
Doppler Frequency (Hz)

Figure 5.1 Baseline LSINR for JDO. Processing performed on 32 antenna elements and
10 pulses.

doppler space are a result of the small number of pulses used in these simulations. The

LSINR is much smoother in Fig. 5.1 than in Fig. 5.2 and a similar relationship is true

between Fig. 5.2 and Fig. 5.3. As the number of pulses falls from 10 to 5 to 3, the

effect on the performance is evident as some shifting or rippling of the LSINR across the

Doppler space. This shifting effect is caused by the poor Doppler resolution available to

the steering vector. The Doppler resolution is directly related to the number of elements in

the temporal steering vector. With so few pulses defining the size of the temporal steering

vector, the Doppler resolution suffers. Nonetheless, each of the optimal JDO plots achieve
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Figure 5.2 Baseline LSINR for JDO. Processing performed on 64 antenna elements and
5 pulses.

0 dB performance within the Doppler space. These results are used as the baseline or the

standard for comparison for the other simulations in this study.

Under Case II turbulence, the estimate of the interference is perturbed by turbulence.

The eigenvalue spectrum of the interference covariance matrix (R!) is a useful tool for

analyzing the effects of turbulence on the estimation of these matrices. To use these tools,

another baseline must be drawn. Figures 5.4 through 5.6 show the eigenspectra for the

unperturbed clutter covariance R,.

Brennan's rule [17] states that the rank of the clutter covariance estimate is

rc - round[N + (M - 1),0]. (5.1)

The operation of rounding a non-integer to an integer value is represented by the round[.]

function. The velocity of the radar platform is represented by j3. Since the radar platform

is ground-based in this study, #3 = 0. So the rank is a function of the number of antenna

elements N. Examining the eigenvalue number at which the eigenvalues drop significiantly,

it is obvious that each of the baseline covariance matrix estimates follows Brennan's rule.
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Figure 5.3 Baseline LSINR for JDO. Processing performed on 200 antenna elements and
3 pulses.

The eigenvalue number at which this drop occurs is the rank of the matrix and the rank

matches the number of antenna elements precisely.

The next two sections examine JDO performance under Case I and Case II turbulence

conditions. Case I turbulence implies the system already has an accurate estimate of the

interference covariance matrix but turbulence perturbs the reception of the target return.

On the other hand, Case II turbulence implies that the system's interference covariance

matrix estimate as well as the reception of the target return are perturbed by the turbulence

effects.

5.2 JDO Performance with Case I Turbulence

The Case I turbulence effects are reached by using the same procedures used to

produce the plots shown in Sec. 5.1 while adding the turbulence perturbations to the

target return. These results reflect effects found in using the frequencies, element and pulse

sizes, and index of refraction structure constant Ct values listed in Table 4.1. The various

Cn values represent light to heavy turbulence. Combined with the trio of frequencies,
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Figure 5.4 Eigenvalue distribution plots for l.c with no turbulence effects. Govariance
matrices formed from signals on 32 antenna elements and 10 pulses.

turbulence effects which vary with turbulence strength and frequency may be examined.

The following sections each examine the variety of turbulence effects for each element-pulse

combination.

5.2.1 32 antenna elements, 10 pulses. The JDO performance is expressed as the

LSINR in Figs. 5.7a through 5.7c. Figure 5.7a shows the performance for an operating

frequency !0 of 3 GHz. Figure 5.7b represents the performance at 10 GHz and Fig. 5.7c

represents the performance at 30 Gllz. These plots focus on the LSINR range between 0 dB
and -10 dB. It is evident from these plots that there is little effect due to turbulence. The

LSirNR plots for situations involving typical turbulence (Ce of 5 × 10-13 to 5 C

are so close in performance to the optimal LSoNR, the broken line representing optimal

performance is not even evident. The only plot showing significant performance loss is the

S5 × 10-1° m-2 3 case. Even under this extremely heavy turbulence case, the LSeNR

falls by only 2 dB and 6 dB for 3 and 30 GHz respectively.

5.2.1 64 antenna elements, 5 pulses. Just as in the previous section, this section

examines JDO performance effects for Case I turbulence in a 64 element × 5 pulse STAP

system. Figures 5.8a through 5.8c also demonstrate a minimal effect due to Case I tur-

bulence. However, the turbulence effects over 64 antenna elements appear to be greater
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Figure 5.5 Eigenvalue distribution plots for .. with no turbulence effects. Covariance

matrices formed from signals on 64 antenna elements and 5 pulses.

than the effects seen over 32 antenna elements. In this case the LSINR plots demonstrate

evidence of a performance degradation for C2 values of 5 × 10-10 and 5 × 10-11 m-21 3.

These 64 element performance losses are greater than those seen in the 32 element case.

5.2.3 200 antenna elements, 3 pulses. Once again, the same JDO simulations

are run under case I turbulence. In this set of simulations, the antenna parameters are 200

antenna elements and 3 pulses. Figures 5.9a through 5.9c show a greater performance loss

than in either of the smaller antenna arrays. Figs. 5.9a through 5.9c also contain further

evidence that turbulence effects are dependent on frequency. In the 200 element system,

the performance loss at 30 G..z is noticably larger than that at 10 GHz and the loss at 10

GHz is more significant than at 3 GHz. It is also evident that the performance losses reach
a threshold at -23 dB. The plot for C. = 5 x 10-1 m 2 / 3 is at -23 dB for all frequencies

while plots for other C2 values fall towards that level with increasing frequency.

5.2.4 Explanation. The larger performance losses with increasing C2, array size,

and frequence correspond directly with the phase structure function plots in Figs. 4.3

through 4.7. As the element-to-element phase difference variance increases, the weight

vector mismatch with the perturbed target steering vector also increases. This mismatch

is caused by the turbulence-induced phase errors at each antenna element.
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Figure 5.6 Eigenvalue distribution plots for R, with no turbulence effects. Covariance
matrices formed from signals on 200 antenna elements and 3 pulses.

The plots in this chapter are shown relative to JDO baseline performance. It is

also useful to examine the data relative to data from some well-established perturbation

method. The next section discusses simulation results for JDO performance losses where

Case I turbulence phase perturbations are simulated with white Gaussian noise.

88



0

.... unpert.

-6 . ..... ..... - 5 X 10 -1 4 .............
- 5X10-1 3

- 5 X 10-1
-8 .-....... ........ 1...........

- 5 x 1O-1o
ic 1 -1

o0 50 10,0 150 200 25'0 300
Doppler Frequency (Hz)

a) fo = 3 GHz

0

-4

.... unpert.

-6 - X 10-1 3
-5x 0
- 5 X 10-1

-8 ...........
-5 x 10-1

0 50 100 150 200 250 300
Doppler Frequency (Hz)

b) fo = 10 GHz

0x0 1

DoplerFreunenc.

antenna~~~ elmet an 10plses

-8 .....................8 9.



0

r4 - 10 .. ............ ............... ----- - . ....... .......... ..

o 50 5 x 10-o 2 20

0 50 100 150 200 250 300

Doppler Frequency (Hz)

a) fo 103 GHz

-101 -1-2

Co

-5

0 50 100 150 200 250 300
Doppler Frequency (Hz)

c) fo = 30 GHz

Figure 5.8 LSINR for JDO under Case I turbulence. Processing performed on 64 antenna
elements and 5 pulses.
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5.2.5 White Gaussian phase perturbations. The reasoning behind measuring

the performance loss for phase perturbations which are spatially uncorrelated and which

follow a Gaussian distribution is explained in Sec. 4.5. Some performance losses occur

in this case. Figures 5.10a through 5.10c demonstrate the performance losses incurred if

the phase perturbations are drawn from uncorrelated Gaussian random variables. The

variance of these phase perturbations range from 0.01 to 0.16 rad2 to approximate the

range of variances seen in phase realizations taken from the phase structure function.
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5.2.5.1 Numerical results. Table 5.1 displays the values gathered from the

white Gaussian phase perturbation simulations described in this section.

Table 5.1 JDO performance losses with phase perturbations represented by uncorrelated
Gaussian random variables. All values are in dB.

no. elements
x 32x10 64x5 200x3

no. pulses
-Variance (rad) (dB) (dB) (dB)

artest = 0.01 -0.0408 -0.0431 -0.0443

test = 0.03 -0.1224 -0.1293 -0.1330
atest= 0.05 -0.2039 -0.2155 -0.2215

atest = 0.07 -0.2854 -0.3016 -0.3101
=test 0.10 -0.4075 -0.4308 -0.4428

t =t 0.13 -0.5295 -0.5599 -0.5755

a2est = 0.16 -0.6514 -0.6889 -0.7081

The losses attributable to the white Gaussian phase perturbation are clearly depen-

dent on the variance of the Gaussian random variable. However, in these simulations, the

length of the antenna array has little effect on the LSINR. Since the phase perturbations

are uncorrelated from element to element, the performance loss due to the phase pertur-

bation for a small antenna array is nearly equal to the performance loss for a large array.

Since the phases taken from the Gaussian distributed phase perturbation are uncorrelated

from element-to-element, the greater propagation distances associated with the larger ar-

rays do not further degrade the performance. So little additional loss is seen in the larger

arrays compared to the smaller arrays.

The notch created for clutter nulling at 0 and 300 Hz Doppler is significantly larger

in the larger array cases however. This larger notch follows the trend established in the

turbulence-induced perturbation simulations. In all simulations, the clutter nulling notch

increases as the number of pulses falls. The larger width null is another indication that the

minimal number of available pulses affects the Doppler resolution of the STAP system.

A comparison between the performance losses for the Gaussian phase perturbations

and the plots for simulated turbulence effects reveals some information about the nature

of the turbulence induced phase perturbations. The strongest levels of turbulence, C2 >
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1 x 10-11 m-2 /3 , surpass the performance losses listed in Table 5.1. This relationship

highlights an important property of the turbulence induced phase perturbations.

The turbulence induced phase perturbations have variances which are generally

smaller than the o2i,• values used to form the Gaussian perturbation. The variances of

the turbulence induced phase perturbations range in size from 5 x 10-6 to 6 x 10-2 rad2 .

While the higher values of variance for the turbulence induced phase perturbations are

on the order of the first four values listed for Oieat in Table 5.1, the performance loss

in the uncorrelated Gaussian case is noticeable but limited in each of these cases. So,

although the turbulence induced phase perturbation may have smaller size and variance

than the uncorrelated Gaussian phase perturbations, the actual phase errors resulting from

turbulence-induced perturbations lead to larger performance losses.

5.2.6 Wrapup: case I turbulence effects on JDO performance. The data provided

in this section shows quantitative effects of Case I turbulence on the performance of the

JDO algorithm. These effects are summarized by the quantity LSINR. While these effects

are minimal, mainly causing negligible losses for C2 values of greatest interest, there are

recognizable trends in this data. As the frequency, C2 value, or array size increases, the

SINR loss also increases. Losses of 6 dB are shown for 200 element arrays at 30 GHz

and C2 = 5 x 10-12 m-2/ 3 . Conditions such as these do occur quite often. These results

indicate that turbulence effects should be kept in mind for large, high frequency arrays

operating under mild to strong turbulent conditions.

5.3 JDO Performance with Case II Turbulence

In this section the performance of a system using the JDO algorithm in Case II

turbulence is examined. In Case II turbulence, both the target signal return and the returns

used to form the interference covariance matrix estimate are perturbed by turbulence. Just

as in the Case I analysis, the frequencies, C2 values, and antenna sizes listed in Table 4.1

are used to obtain the results given in this section.
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5.3.1 Turbulence effects on estimates of R,. The effects of turbulence on the

formation of R, are best described in terms of the eigenvalue distribution. Figures 5.11

through 5.13 show the eigenvalue distribution of the perturbed interference covariance

matrices (R!).

These plots consistently show some distribution of power among eigenvalues due

to turbulence effects. The rank of the clutter covariance matrix estimate does not de-

viate from Brennan's rule but the shift of the values of all the eigenvalues is evident at

the higher frequencies. This shift increases with increasing frequency. In addition, the

strongest turbulence levels cause the greatest deviance of the eigenvalue distribution from

the unperturbed case. These plots show that some change is evident in the structure of

the interference covariance matrix estimate. This change is caused by the spatial phase

perturbations introduced by atmospheric turbulence.
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Figure 5.11 Eigenvalue distribution plots for R!, Covariance matrices formed from sig-
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eigenvalue distribution of R,. Solid line plots represent simulation results
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Developing an understanding of the effects of turbulence on the form of R!, ensures an

even better understanding of the LSINIR data for Case II turbulence. The following section

examines the Case II turbulence performance loss in LSINR for the various configurations

discussed.

5.3.2 32 antenna elements, 10 pulses. This section presents the Case II tur-

bulence performance for antennas using 32 antenna elements, 10 pulses, and the JDO

algorithm. The format is similar to the format used to convey the results for JDO Case

I turbulence effects in Section 5.2.1 and Fig. 5.7. Figures 5.14a, 5.14b, and 5.14c contain

plots relating the performance at 3, 10, and 30 GHz respectively. The plots appearing in

Fig. 5.14 are exactly the same as those presented for Case I turbulence in Fig. 5.7. The

previous section described the effects of turbulence on the interference covariance matrix

estimates in terms of the eigenstructure characteristics. Although some turbulence effect

is observed in the characteristics of R!, these effects have no perceivable impact on the

performance of the system. Since the rank of these covariance matrices have not changed

from the unperturbed cases, the lack of impact on Case II performance over Case I is

not surprising. The weight vector w' resulting from the perturbation of the interference

covariance estimate does not change appreciable in any of the cases investigated.

5.3.3 64 antenna elements, 5 pulses. Using the same metrics as the previous

sections, this section includes LSINR plots produced from simulations of the JDO algorithm

applied to Case II turbulence. Figures 5.15a through 5.15c display the LSINR performance

for all C2 values of interest at 3, 10, and 30 GHz. Once again, the performance loss is

greater over 64 elements than over 32 elements. The same trends with respect to C2 value

and frequency are seen here as were seen in the smaller array case. However, there is no

difference between the Case II turbulence plots of Fig. 5.15 and the Case I turbulence plots

of Fig. 5.8. Once again, the perturbation of the interference has no perceivable affect.

5.3.4 200 antenna elements, 3 pulses. This section contains the simulation results

for 200 antenna elements. The format is the same as that seen in previous sections. Figures
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5.16a through 5.16c include LSINR plots for JDO performance under Case II turbulence

at 3, 10, and 30 GHz. All C2 values of interest are considered.
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Figure 5.14 LSINR plots for JDO under case II turbulence. Processing performed on 32
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Again, the loss is greater over 200 antenna elements than over smaller arrays. Per-

formance losses also increase with increasing frequency or increasing C2. Once again, the

Case II turbulence effects are no different than in Case I.

The following section contains results from simulations under which atmospheric

turbulence induced performance losses in FTS processing are measured.

5.4 Factored Time-Space (FTS) Baseline Performance

Just as standards exists for measuring performance losses in JDO algorithms, sep-

arate standards exist for the FTS algorithm. This section contains plots which represent

these standards for comparison. These standards are known as LSINR baseline perfor-

mance for FTS. The plots denoting baseline performance are shown in Figs. 5.17 through

5.20. Only the 32 element x 10 pulse geometry is considered here since the other ge-

ometries do not include enough pulses to ensure reliable FTS performance. Figure 5.17

provides a large scale perspective of the LSINR for unperturbed FTS performance and Fig.

5.18 depicts the same plot in the range of LSINR values of interest. The additional 1 dB

0 --- --- ---

- 1 0 ............... .. ................

-2 0 ......................

5 -30 ............

S-4 0 ..........

-50

0 50 100 150 200 250 300
Doppler Frequency (Hz)

Figure 5.17 Baseline LSINR for FTS. Processing performed on 32 antenna elements and
10 pulses.
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Figure 5.18 Baseline LSINR for FTS (zoomed). Processing performed on 32 antenna
elements and 10 pulses.

drop in the LSINR at 150 Hz Doppler in Fig. 5.17 is probably due to the impact of the

80 dB Doppler taper at that frequency. Ward [17] states that a heavy Doppler sidelobe

taper is central to the success of FTS. When applying such a taper to the Doppler filters,

the frequency least impacted by the taper will be the frequency at 1/2 the pulse repetition

frequency (PRF). Without the focus provided by this Doppler taper, heavy performance

losses become apparent.

Notice that none of the plots achieve 0 dB performance. Since FTS is a partially-

adaptive method, performance on par with JDO is not possible. In addition, the perfor-

mance of the FTS algorithm for 200 elements x 3 pulses or 64 elements x 5 pulses is very

poor. Ward [17] also points out that reliable FTS processing requires many degrees of

freedom in both space and time. Clearly, the 3 or 5 pulses used in these simulations is not

adequate to meet the Doppler resolution requirements of FTS. The next section presents

a discussion about the need for an adequate temporal dimension for FTS processing.

5.4.1 Performance in FTS processing with turbulence perturbations. It is also ev-

ident that FTS performance is related to the sizes of N and M. The LSINR for simulations
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Figure 5.19 Optimal LSINR for FTS. Processing performed on 64 antenna elements and
5 pulses.

with N = 32 is higher than for those simulations with N = 64. Similarly, the performance

of N = 64 systems surpasses that of N = 200 systems. The key behind these performance

levels is not in the size of N but in the size of M. The FTS algorithm employs Doppler

filtering prior to adaptation. The number of Doppler filters, hence the resolution of the

algorithm in the Doppler space, is defined by the size of M. A larger M denotes much finer

Doppler resolution than a smaller M. Figures 5.21 and 5.22 depict the untapered Doppler

filters in the Doppler space for two different values of M. Figure 5.21a represents an FTS

Doppler filter bank with M = 3 pulses defining the Doppler resolution, such as that found

in the N = 200 element simulations. Here, the Doppler space is divided into three portions

and Fig. 5.21a depicts the shape of the LSINR plots presented for the N = 200 simulations

in Fig. 5.20. Figure 5.21b highlights the same three-component Doppler filter bank but

in this plot, the output of the first filter is neglected as in the case of nulling for the 0 Hz

Doppler clutter. In FTS processing, the mth composite weight vector wm is formed from

wm = TmT•IuTmgS
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Figure 5.20 Optimal LSINR for FTS. Processing performed on 200 antenna elements
and 3 pulses.

as shown in Eqn. (2.90). The estimate of the interference-plus-noise covariance matrix R

is projected to a lower dimension space by

Tm = (f ® IN).

The mth Doppler filter is given by fin. Forming the vector Wm precisely to steer the beam

and nulls is more difficult when M is small. The effect of having coarse Doppler resolution

among the Doppler filters is that the resulting Wm causes some nulling across the entire

Doppler space in order to achieve the deep nulling at 0 Hz Doppler. Consequently, the

overall performance of the N = 200 element algorithm is poor and implementations with

more pulses exhibit better performance. To highlight the better flexibility available with a

larger M, Fig. 5.22 depicts the filter bank used when M = 10. Figure 5.22a shows the full

set of Doppler filters and Figure 5.22b shows the gap left in the space when clutter nulling

occurs. The size of the 0 Hz gap caused by the nulling is reduced while the improved

resolution of the filter promotes higher LSINR• values.
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Figure 5.21 Doppler filter passbands plotted in the Doppler space divided among 3 fil-
ters. These plots highlight the poor resolution in Doppler afforded by FTS
algorithms using only 3 pulses.

The next two sections contain the results and analysis of simulations designed to

examine the effects of Case I and Case II turbulence on FTS processing.

5.5 FTS Performance with Case I Turbulence

Section 5.2 contains data and explanations about the effects of Case I turbulence on

JDO processing. The data consists of LSINR values which represent the loss in performance

due to the turbulence effects. This section uses a similar approach to examine Case I

turbulence effects on the FTS processing algorithm. The baseline values for FTS processing

presented in Sec. 5.4 are used here as a standard for comparison. Each element-pulse

combination is considered seperately in the following sections.

5.5.1 32 antenna elements, 10 pulses. The degradation in the LSINR due to

case I turbulence effects are shown in Fig. 5.7. The plots show a minimal effect at all

frequencies and all but the strongest turbulence simulations. There is an increase in the

LSINR evident at the center of the Doppler space for the higher frequencies. This increase

is probably due, once again, to the effects of the Doppler taper. Generally, performance

losses are on pax with those seen under JDO processing methods. Similarly, increased

turbulence perturbation effects axe seen at higher operating frequencies.

109



OA 0.0 ... .

02. 0.2

0 0

0 boppfr Fre~uencr (Hzi ]D ' floppler Freuencr (W7

a) Doppler filters spanning the full Doppler b) (M - 1) Doppler filters demonstrate the
improvement in low frequency performance of
adaptive nulling with finer Doppler resolution.

Figure 5.22 Doppler filter passbands plotted in the Doppler space divided among 10
filters. These plots demonstrate the improvement in Doppler resolution
resulting from FTS algorithms using as many as 10 pulses.

The next section examines the FTS performance consequences of operating in a Case

II turbulence environment.

5.6 FTS Performance with Case II Turbulence

Just as in the JDO simulations, the performance results for FTS processing under

Case II turbulence are the same as those presented for the Case I turbulence simulations.

The additional effect due to the perturbation of the weight vector through perturbations of

the interference covariance estimates has a negligible effect on the results already presented

in the previous section. Under Case II turbulence effects, the changes in the weight vector

from Case I are probably insignificant.

The FTS performance under Case II turbulence is summarized by the LSINR plots

in Figure 5.24. The plots shown in these figures confirm that there is little change between

Case I turbulence and Case II turbulence effects for N = 32 elements. For the strongest

turbulence simulation, there is an increased effect for Case II turbulence over Case I turbu-

lence at the highest frequency. Because this change only appears in the strongest turbulence

simulation (an unrealistic strength of turbulence) it is difficult to draw general conclusions

from this result.
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5.7 Summary

The effects of atmospheric turbulence on STAP performance are presented in this

chapter. The results presented include effects at different frequencies and turbulence C2

values on three different STAP geometries. Both JDO and FTS performance is examined

in this chapter.

Case II turbulence effects in R1 are evident in the matrices' eigenvalues.. With

increasing frequency and C2 values, the energy in the matrices appears more distributed

among the eigenvalues. This eigenvalue spreading with increased turbulence is evident in

the eigenspectra plots of all the simulations.

The results show that JDO performance is affected by turbulence but the effect is

minimal under realistic turbulence environments. The observed effects are greater with

increasing frequency, C2 value, and array size but no significant additional degradation is

seen in Case II effects over Case I. Simulations using Gaussian distributed phase pertur-

bations show similar results but on a smaller scale.

FTS performance is similar to. that seen for JDO. Case I and Case II effects on FTS

performance are virtually similar.

Overall, turbulence effects on STAP performance are minimal for typical turbulence

strengths at radar frequencies. However, turbulence effects may become significant for

large enough arrays at higher frequencies.
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Figure 5.24 LSINR plots for FTS under Case II turbulence. Processing performed on 32
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VI. Conclusions and Recommendations

In this thesis, the effects of atmospheric turbulence on a ground-based, linear antenna

array using Space-Time Adaptive Processing (STAP) are studied. Due to the spectrum

of interest (3 to 30 GHz), these effects are restricted to phase perturbations in reference

to the spatial dimension. Effects on Fully Adaptive STAP or Joint Domain Optimum

(JDO) and Factored Time-Space (FTS) STAP methods are investigated for arrays of size

32, 64, and 200 antenna elements operating in an evironment having one target and clutter

interference.

6.1 Summary of Procedure

The index of refraction structure constant (C2) quantitatively describes the strength

of the turbulence and is used to develop the phase structure function (Ds(p)) in terms

of the distance in space p = * - . The statistics of the spatial phase variations due

to turbulence, summarized in Ds(p), are used to develop realizations of the phase errors

on the elements of the antenna array. The spatial phase perturbation statistics may also

be re-oriented into a covariance matrix to modify the clutter covariance matrix (Re) for

the turbulence effects. These phase error realizations and perturbed clutter covariance

matrices (Rr) may be used in Monte Carlo simulation to form the signal-to-interference-

plus-noise-ratio (SINR) and subsequently the SINR loss (LSINR).

6.2 Results

6.2.1 JDO performance. In this thesis, the effects of atmospheric turbulence

of typical strengths (C2: 10-14 to 10-12 m- 2/3) yield unremarkable losses for all but the

highest frequencies and largest arrays. Generally, although the effects are negligible for

radar frequencies, performance losses due to atmospheric turbulence effects increase with

9 increasing array size

* increasing frequency

* increasing C2 value.

114



This trend in performance loss may yield significant losses in the right combination of

STAP characteristics. For JDO STAP systems operating at 30 GHz with 200 antenna

elements, SINR losses of -6 dB are measured for C,2 = 5 X 10-12 m-2/13 . In this particular

case, a significant loss occurs under vary common strength turbulence.

6.2.2 FTS performance. Performance losses for FTS are measured for small

antenna arrays only and these losses are on a similar scale to JDO performance losses.

Therefore, FTS processing may be used for its computational advantage with no disadvan-

tage in terms of turbulence effects.

6.2.3 Case I turbulence vs. Case II turbulence. Examination of two different

forms of turbulence effect are summarized as Case I turbulence and Case II turbulence.

Case I involves turbulence-induced phase perturbations on the target signal return while

the the interference covariance is known. Case II involves a perturbation of the target

signal return as well as perturbations disrupting the system estimate of the interference

covariance matrix. Both Case I and Case II yield similar losses for JDO and FTS. From

this, it may be assumed that the interference may be confidently estimated by sampling

within a turbulent environment without any serious consequence in performance.

6.3 Recommendations for Future Work

This thesis turns up some significant performance consequences for operating at

higher frequencies and/or with larger arrays in a turbulent environment. It would prove

useful to further examine the effects at frequencies higher than 30 GHz and arrays larger

than 200 antenna elements.

At the frequencies used in this study, turbulence-induced temporal phase perturba-

tions are of insignificant magnitude and frequency. Studies investigating higher frequencies

may not necessarily make the same assumption. In addition, some temporal effect is intro-

duced by movement of turbulent eddies by wind velocity. Taylor's Frozen Flow hypothesis

may be used to approximate these wind effects and to quantify the effect on STAP perfor-

mance.
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This study, for the purposes of focusing on the atmospheric turbulence effects, con-

sidered clutter interferers only. Research examining the effects of turbulence on nulling of

jammers would prove most useful to the STAP community.

The FTS results presented in this thesis only touch the tip of the research needed to

understand turbulence effects. There are many other Partially Adaptive STAP methods

which may be significantly affected by atmospheric turbulence effects. This may become

more evident if any sort of turbulence-induced temporal phase perturbations are also in-

troduced.

McMillan [12] alludes to a STAP version of the Beacon Guide Star adaptive method.

This method, already used in adaptive optics, combats atmospheric turbulence effects by

shifting the weights on the antenna adaptively to counter turbulence effects. The Case

II turbulence development and results provide a good lead into the possibility of using

a clutter beacon as a model for developing the turbulence-countering adaptive weights.

Some difficulties will occur in applying this technique because STAP is a method anchored

in using statistics and statistical quantities while the Beacon Guide Star concept involves

sampling and compensation of individual instances of turbulence.
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Appendix A. Transforming a matrix into one that is positive definite

If the matrix A is not positive definite then the relationship

xHAx > 0 (A.1)

does not hold true for some x. Instead, for this x, the relationship is

xHAx = h, (A.2)

where h < 0. Shifting the inner product by h along the number line yields

xHAx + h > 0. (A.3)

If h is replaced by gxHx, the test for positive definiteness may be rewritten as

xHAx+gxHx > 0

XHAx+XHgX > 0

xH(Ax+ gx) > 0 (A.4)

If g and x are eigenvalue-eigenvector pairs such that g = -AAj and x = vAj then a

threshold is met. This threshold is described by

xH(Ax + gx) = vi (AVA,- AA, VA,) (A.5)
= H•o (A.6)

VA. 0 (.6

= 0. (A.7)

Here, XAA is the ith eigenvalue of A and vAj is the corresponding eigenvector. Since the

eigenvalue-eigenvector relationship is

AVAj = XAAVAi, (A.8)
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then the relationship may be rewritten to form

AVAj - AAjVA, = 0. (A.9)

So, a matrix which is not positive definite, but is theoretically meant to be, may be

transformed into one that is positive definite. This transformation involves subtracting a

diagonal matrix whose elements are formed from a significant negative eigenvalue from A.

The transformation produces a positive definite matrix given by

B = A- AAJI

= A+gI. (A.10)

Now, the resulting matrix B has the same form as A and meets the criteria for being

positive definite

xHBx = xH(A+gI)x (A.11)

> 0. (A.12)
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